UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Evaluación de propiedades físico-mecánicas del Concreto Asfáltico en Caliente modificado con Residuos del Agregado Grueso Retriturado en Cantera Santa Cecilia

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO CIVIL

Autores:

Bach. Rodríguez Vásquez, Elian Rubén Bach. Vinchales Salazar, Josiah George

Asesor:

Ms. Ing. Rivasplata Díaz Julio Cesar **DNI N**°: 32770844 **ORCID**: 0000-0002-4180-9362

NUEVO CHIMBOTE – PERÚ 2025

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Evaluación de propiedades físico-mecánicas del Concreto Asfáltico en Caliente modificado con Residuos del Agregado Grueso Retriturado en Cantera Santa Cecilia

TESIS PARA OBTENER EL
TITULO PROFESIONAL DE INGENIERO CIVIL

REVISADO Y APROVADO POR:

Ms. Ing. Rivasplata Díaz Julio Cesar

Asesor

DNI N°: 32770844

ORCID: 0000-0002-4180-9362

NUEVO CHIMBOTE – PERÚ 2025

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Evaluación de propiedades físico-mecánicas del Concreto Asfáltico en Caliente modificado con Residuos del Agregado Grueso Retriturado en Cantera Santa Cecilia

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO CIVIL

REVISADO Y APROVADO POR LOS SIGUIENTES JURADOS:

Ms. Ing. Janet Verópica Saavedra Vera Presidenta

> DNI N°: 32964440 ORCID: 0000-0002-4195-982X

Ms. Ing. Luz Esther Álvarez Asto

Asto Secretaria

DNI N°: 32968961 ORCID: 0000-0001-6491-6569

Ms. Ing. Rivasplata Díaz Julio Cesar Asesor

DNI N°: 32770844 ORCID: 0000-0002-4180-9362

NUEVO CHIMBOTE – PERÚ 2025

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 27 días del mes de mayo del año dos mil veinticinco, siendo las 11:00 horas, en el Laboratorio de Topografía del edificio de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución № 095-2025-UNS-CFI, con fecha 27.03.2025, integrado por los siguientes docentes: Ms. Janet Verónica Saavedra Vera P(Presidente), Ms. Luz Esther Álvarez Asto (Secretaria), Ms. Julio César Rivasplata Díaz (Integrante), Dr. Atilio Rubén López Carranza (Accesitario) en base a la Resolución Decanal № 234-2025-UNS-FI se da inicio la sustentación de la Tesis titulada: "EVALUACIÓN DE PROPIEDADES FÍSICO - MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA", presentado por los Bachilleres RODRIGUEZ VÁSQUEZ ELIAN RUBEN con cód. Nº 0201713001 y VINCHALES SALAZAR JOSIAH GEORGE con cód. Nº 0201813059, quienes fueron asesorados por el docente Ms. Julio César Rivasplata Díaz según lo establece la T. Resolución Decanal Nº 813-2023-UNS-FI, de fecha 20.11.2023.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
RODRIGUEZ VÁSQUEZ ELIAN RUBEN	18	BUENO

Siendo las 12:00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 27 de mayo de 2025.

Ms. Janet Verónica Saavedra Vera

Presidente

Ms. Luz Esther Alvarez Asto

Secretaria

Ms. Julio César Rivasplata Díaz

Integrante

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil
- EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 27 días del mes de mayo del año dos mil veinticinco, siendo las 11:00 horas, en el Laboratorio de Topografía del edificio de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 095-2025-UNS-CFI, con fecha 27.03.2025, integrado por los siguientes docentes: Ms. Janet Verónica Saavedra Vera P(Presidente), Ms. Luz Esther Álvarez Asto (Secretaria), Ms. Julio César Rivasplata Díaz (Integrante), Dr. Atilio Rubén López Carranza (Accesitario) en base a la Resolución Decanal Nº 234-2025-UNS-FI se da inicio la sustentación de la Tesis titulada: "EVALUACIÓN DE PROPIEDADES FÍSICO – MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA", presentado por los Bachilleres RODRIGUEZ VÁSQUEZ ELIAN RUBEN con cód. Nº 0201713001 y VINCHALES SALAZAR JOSIAH GEORGE con cód. Nº 0201813059, quienes fueron asesorados por el docente Ms. Julio César Rivasplata Díaz según lo establece la T. Resolución Decanal Nº 813-2023-UNS-FI, de fecha 20.11.2023.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
VINCHALES SALAZAR JOSIAH GEORGE	18	BUENO

Siendo las 12:00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 27 de mayo de 2025.

Ms. Janet Verónica Saavedra Vera

Presidente

Ms. Luz Esther Álvarez Asto Secretaria

Ms. Julio César Rivasplata Díaz Integrante

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega: Josiah George Vinchales Salazar Título del ejercicio: TESIS / VINCHALES - RODRIGUEZ

Título de la entrega: Evaluación de propiedades físico-mecánicas del Concreto Asfá...

Nombre del archivo: TESIS_RODRIGEZ_-_VINCHALES.docx


Tamaño del archivo: 1.96M

> Total páginas: 63

Total de palabras: 10,909 Total de caracteres: 60,930

Fecha de entrega: 25-may.-2025 01:48p. m. (UTC-0500)

Identificador de la entrega: 2558131553

Evaluación de propiedades físico-mecánicas del Concreto Asfáltico en Caliente modificado con Residuos del Agregado Grueso Retriturado en Cantera Santa Cecilia

TESIS PARA OBTENER EL TITULO PROFESIONAL DE INGENIERO CIVIL

Autores: Bach. Rodríguez Vásquez, Elian Ruben Bach. Vinchales Salazar, Josiah George

Asesor: Ms. Ing. Rivasplata Díaz Julio Cesar DNI N°: 32770844

NUEVO CHIMBOTE - PERÚ 2025

Evaluación de propiedades físico-mecánicas del Concreto Asfáltico en Caliente modificado con Residuos del Agregado Grueso Retriturado en Cantera Santa Cecilia

INFORM	ME DE ORIGINALIDAD	
1 INDICI	9% 19% 2% 11% TRABAJOS DEL ESTUDIANTE	
FUENTE	ES PRIMARIAS	
1	hdl.handle.net Fuente de Internet	6%
2	Submitted to Universidad Privada del Norte Trabajo del estudiante	1 %
3	idoc.tips Fuente de Internet	1 %
4	pt.slideshare.net Fuente de Internet	1%
5	repositorio.uncp.edu.pe Fuente de Internet	1 %
6	Submitted to Universidad Andina Nestor Caceres Velasquez Trabajo del estudiante	1 %
7	repositorio.unasam.edu.pe Fuente de Internet	1 %
8	vsip.info Fuente de Internet	1%

repository.unimilitar.edu.co

DEDICATORIA

A mis padres por haber forjado quien soy hoy en día, muchos de mis logros son fruto de ello, incluido este, a mis hermanas por su amor incondicional y a quienes dedico todo mi empeño y dedicación puesto en la ejecución de esta tesis.

Rodríguez Vásquez, Elian Rubén

Esta tesis está dedicada a Dios, quien me proporciona la sabiduría y orienta mi camino, a mis padres y hermanos por su respaldo incondicional y quienes me impulsan a seguir adelante y a mi familia por su compañía y aliento constante. Esta tesis es para ustedes, como un pequeño reflejo de todo lo que me han brindado.

Vinchales Salazar, Josiah George

AGRADECIMIENTOS

A nuestros docentes a lo largo de nuestra carrera universitaria, por brindarnos el conocimiento necesario para llegar hasta este momento, cada uno de ustedes ha hecho un aporte significativo al desarrollo nuestras habilidades y fortalecimiento profesional. Sus enseñanzas y orientación no fueron sólo una fuente de inspiración, sino también la base para la realización de este trabajo

Queremos expresar nuestro más sincero agradecimiento a nuestro asesor el Ing. Rivasplata Diaz Julio Cesar, gracias por su invaluable apoyo y orientación durante todo el proceso, su dedicación, paciencia y conocimiento nos permitieron superar los desafíos en el camino y llevar a cabo esta investigación con confianza y determinación.

RODRIGUEZ & VINCHALES

Índice General

DEDICATO	RIA	ii
AGRADECI	MIENTOS	iii
Índice Genera	al	iv
Índice de Tab	olas	vii
Índice de Fig	uras	ix
Índice de And	exos	X
RESUMEN .		xi
ABSTRACT		xii
I. INTROE	DUCCIÓN	14
1.1. Desc	cripción y Formulación del Problema	14
1.1.1.	Problema General	15
1.1.2.	Problemas Específicos	15
1.2. Obje	etivos	16
1.2.1.	Objetivo General	16
1.2.2.	Objetivos Específicos	16
1.3. Form	nulación de la Hipótesis	16
1.4. Justi	ficación e Importancia	17
1.4.1.	Justificación	17
1.4.2.	Importancia	18
II. MARCO	TEÓRICO	20
2.1. Ante	ecedentes	20
2.1.1.	Antecedentes Internacionales	20
2.1.2.	Antecedentes Nacionales	21
2.1.3.	Antecedentes Locales	21

2.2. Marc	co Conceptual	22
2.2.1.	Agregados Pétreos	22
2.2.2.	Clasificación de los Agregados Pétreos	22
2.2.3.	Residuos de Agregado Grueso Retriturado	25
2.2.4.	Propiedades de los Agregados	26
2.2.5.	Proceso y Equipos de Trituración	27
2.2.6.	Cemento Asfáltico	32
2.2.7.	Mezclas Asfálticas	33
2.2.8.	Clasificación de las Mezclas Asfálticas	34
2.2.9.	Principales Propiedades de Mezclas Asfálticas	35
2.2.10.	Concreto Asfáltico	36
2.2.11.	Parámetros para el Diseño de Concreto Asfaltico en Caliente	37
III. METOD	OLOGÍA	44
3.1. Enfo	oque	44
3.2. Méto	odo	44
3.2.1.	Nivel o Alcance de la Investigación	44
3.2.2.	Diseño de Investigación	45
3.3. Pobl	ación y Muestra	46
3.3.1.	Población	46
3.3.2.	Muestreo	46
3.3.3.	Muestra	47
3.4. Vari	ables y Operacionalización	48
3.4.1.	Variable Independiente: Porcentaje de Residuos del Agregado (Grueso
Retritur	rado	48

3.4.2. Variable Dependiente: Propiedades Físico-mecánicas del Concreto Asfáltico en
Caliente48
3.5. Técnicas e Instrumentos de Recolección de Datos
3.6. Técnicas de Análisis de Resultados
IV. RESULTADOS Y DISCUSIÓN51
4.1. Resultados
4.1.1. Propiedades Físico-mecánicas del Agregado Grueso Retriturado51
4.1.2. Diseño de Concreto Asfaltico en Caliente Modificado
4.1.3. Comparativo de muestras
4.1.4. Prueba de hipótesis
4.2. Discusiones
V. CONCLUSIONES Y RECOMENDACIONES74
5.1. Conclusiones
5.2. Recomendaciones
REFERENCIAS BIBLIOGRÁFICAS79
ANEXOS84

Índice de Tablas

Tabla 1. Clasificación de los agregados según su densidad	23
Tabla 2. Clasificación de los agregados según su tamaño.	24
Tabla 3. Clasificación de los agregados según su forma.	24
Tabla 4. Clasificación en función de su textura superficial.	25
Tabla 5. Clasificación del agregado grueso retriturado	25
Tabla 6. Principales propiedades del cemento asfáltico.	32
Tabla 7. Requerimientos de los agregados gruesos para CAC - RNE	37
Tabla 8. Requerimientos de los agregados grueso para CAC - MTC	38
Tabla 9. Requisitos para los árido finos para CAC - RNE.	38
Tabla 10. Requerimientos de los agregados finos para CAC - MTC.	39
Tabla 11. Requerimientos para Caras Fracturadas para CAC.	39
Tabla 12. Requerimientos del equivalente de Arena para CAC.	39
Tabla 13. Requerimientos de angularidad del agregado fino	40
Tabla 14. Requerimientos de gradación de los áridos para CAC.	40
Tabla 15. Sustancias dañinas en los agregados.	40
Tabla 16. Requisitos del CAC.	41
Tabla 17. Requisitos de adherencia para CAC.	41
Tabla 18. Vacíos mínimos del agregado mineral.	42
Tabla 19. Matriz de diseño para estudio cuasi experimental.	46
Tabla 20. Muestra para la investigación.	47
Tabla 21. Evaluación de propiedades físico-mecánicas del RAGR para CAC.	51
Tabla 22. Diseño del CAC patrón.	52
Tabla 23. Diseño del CACM15%.	52
Tabla 24. Diseño del CACM25%.	52

Tabla 25. Diseño del CACM35%.	53
Tabla 26. Comparativo de muestras.	60
Tabla 27. Resultados de datos estadísticos descriptivos – Estabilidad Marshall	61
Tabla 28. Resultados de datos estadísticos descriptivos – Flujo	62
Tabla 29. Resultados de datos estadísticos descriptivos – Relación estabilidad / flujo	63
Tabla 30. Resultados de datos para T de student – Estabilidad Marshall	64
Tabla 31. Resultados de datos para T de student – Flujo	65
Tabla 32. Resultados de datos para T de student – Relación estabilidad / flujo	66
Tabla 33. Propiedades del RAGR según la procedencia de trituración	68
Tabla 34. Comparación de propiedades del RAGR y arena zarandeada	69
Tabla 35. Diseño de CAC modificado.	75

Índice de Figuras

Figura 1. Trituradora de Mandíbula corte transversal.	27
Figura 2. Trituradora de Mandíbula.	27
Figura 3. Trituradora de Cono corte transversal.	28
Figura 4. Trituradora de Cono.	28
Figura 5. Trituradora de Impacto Eje Horizontal corte transversal.	29
Figura 6. Trituradora de Impacto Eje Horizontal.	29
Figura 7. Trituradora de Molino de Martillos corte transversal.	30
Figura 8. Trituradora de Molino de Martillos.	30
Figura 9. Trituradora de Rodillos corte transversal.	31
Figura 10. Trituradora de Rodillos.	31
Figura 11. Estabilidad MARSHALL - CAC Modificado	53
Figura 12. Flujo - CAC Modificado.	54
Figura 13. Porcentaje de vacíos con aire - CAC Modificado	55
Figura 14. Porcentaje de vacíos en el agregado mineral - CAC Modificado	55
Figura 15. Relación estabilidad/flujo - CAC Modificado	56
Figura 16. Peso específico teórico máximo - CAC Modificado	57
Figura 17. Porcentaje de asfalto que absorbe el agregado - CAC Modificado	58
Figura 18. Resistencia a la compresión simple - CAC Modificado	58
Figura 19. Peso específico unitario - CAC Modificado	59
Figura 20. Distribución normal – Estabilidad Marshall.	61
Figura 21. Distribución normal – Flujo.	62
Figura 22. Distribución normal – Relación estabilidad / flujo	63
Figura 23. T de Student – Estabilidad Marshall.	65
Figura 24. T de Student – Flujo.	65
Figura 25. T de Student – Relación estabilidad / flujo.	66

Índice de Anexos

ANEXO 1. MATRIZ DE CONSISTENTIA Y OPERACIONALIZACION	85
ANEXO 2. PROCEDIMEINTO DE ENSAYO REALIZADOS EN LABORATORIO	89
ANEXO 3. RESULTADOS DE ENSAYOS REALIZADOS EN EL LABORATORIO	DE LA
UNIVERSIDAD NACIONAL DEL SANTA	171
ANEXO 4. RESULTADOS DE ENSAYOS REALIZADOS EN EL LABORATOR	RIO DE
KAE INGENIERIA	188

RESUMEN

La presente investigación planteó como objetivo principal evaluar las propiedades físicomecánicas de mezclas asfálticas en caliente mediante el reemplazo parcial del agregado fino
por residuos del agregado grueso retriturado (RAGR). El estudio se desarrolló bajo un enfoque
cuantitativo, de tipo aplicada, con un nivel correlacional y un diseño cuasi experimental. Se
evaluaron las propiedades de los agregados provenientes de la cantera Santa Cecilia, y se
realizaron sustituciones del agregado fino en proporciones de 15%, 25% y 35%, empleando
cemento asfáltico PEN 60-70. El comportamiento de cada mezcla fue determinado mediante
ensayos Marshall.

Los resultados demostraron que la mezcla con 15% de RAGR presentó el mejor desempeño global, destacando por su alta estabilidad Marshall (14 kN), adecuada fluidez (0.36 cm), una relación estabilidad/flujo favorable (3921 kg/cm) y la resistencia f'c superior (87.26 kg/cm²) en comparación con la mezcla patrón (sin RAGR). Asimismo, los valores de vacíos con aire (4%) y vacíos del agregado mineral (14.7%) se ubicaron dentro de los parámetros aceptables establecidos por la normativa técnica.

Concluimos en que incorporación de RAGR en sustitución del agregado fino mejora significativamente las propiedades físico-mecánicas del concreto asfáltico en caliente, posicionándose como una alternativa viable, técnica y ambientalmente favorable, para su aplicación en pavimentos flexible.

Palabras Clave: Pavimento, Concreto Asfaltico Modificado, Propiedades Físico-mecánicas, Agregado Retriturado.

ABSTRACT

The present research aimed to evaluate the physical and mechanical properties of hot mix asphalt by partially replacing fine aggregate with crushed coarse aggregate waste (RAGR). The study was conducted using a quantitative approach, applied type, with a correlational level and a quasi-experimental design. The properties of aggregates from the Santa Cecilia quarry were evaluated, and substitutions of fine aggregate were made in proportions of 15%, 25%, and 35%, using PEN 60-70 asphalt cement. The behavior of each mixture was determined through Marshall tests.

Results showed that the mixture containing 15% RAGR exhibited the best overall performance, with high Marshall stability (14 KN), appropriate flow (0.36 cm), a favorable stability/flow ratio (3921 kg/cm), and superior compressive strength (87.26 kg/cm²) compared to the control mix (without RAGR). Furthermore, the air voids (4%) and voids in mineral aggregate (14.7%) were within acceptable ranges according to technical standards.

In conclusion, incorporating 15% RAGR as a partial replacement for fine aggregate significantly improves the physical and mechanical properties of hot mix asphalt, making it a technically viable and environmentally beneficial alternative for use in flexible pavements

Keywords: Pavement, Modified Asphalt Concrete, Physical-Mechanical Properties, Reprocessed Aggregate, Recrushed Aggregate.

CAPITULO I

INTRODUCCIÓN

I. INTRODUCCIÓN

1.1. Descripción y Formulación del Problema

La OCDE (2021), en su informe sobre infraestructura de transporte, señala que, a escala global, uno de los retos más significativos en el ámbito de la infraestructura vial es la degradación prematura de las vías, ocasionada por el uso intensivo, el cambio climático y una planificación inadecuada en el diseño y conservación de los pavimentos asfálticos. Diversos países enfrentan elevados costos de reparación y reconstrucción, debido a que las mezclas de concreto asfáltico en caliente no siempre se adaptan adecuadamente a las condiciones climáticas locales ni a las crecientes cargas del tráfico pesado. Esta situación genera ineficiencias económicas, un aumento en las emisiones de carbono por las reconstrucciones frecuentes y una disminución en la seguridad y conectividad vial, lo que impacta negativamente en el desarrollo sostenible.

La infraestructura vial constituye un elemento fundamental para el crecimiento y desarrollo económico y social de cualquier país, región o ciudad. En este contexto, el concreto asfáltico en caliente se ha consolidado como uno de los materiales más utilizados en la construcción y mantenimiento de carreteras.

El Peruano (2024, Enero 21), informó que, en el año 2023, el Perú registró una inversión en obras de transporte que alcanzó los 723.4 millones de dólares. Esta cifra representa un incremento del 33.2 % en comparación con el año 2022, según datos proporcionados por OSITRAN

En 2020, INEI reveló que, en los próximos 30 años, la población total del Perú se incrementará en un 20.7 %. Este crecimiento poblacional incidirá directamente en la demanda de infraestructura vial, la cual es de gran importancia, ya que facilita el intercambio y promueve el desarrollo socioeconómico y cultural del país.

Por ello, la creciente demanda de infraestructura vial en el país plantea la necesidad de buscar soluciones sostenibles y eficientes, lo que impulsa la investigación y el desarrollo de nuevos procesos y técnicas orientados a mejorar el rendimiento de estas estructura.

Por lo tanto, resulta necesario continuar en la búsqueda de alternativas que den respuesta a las necesidades mencionadas, las cuales deben cumplir con los estándares establecidos por las normativas vigentes en el país y, a su vez, garantizar un bajo impacto ambiental.

Teniendo en cuenta lo mencionado, la modificación del concreto asfáltico en caliente mediante la incorporación de agregado grueso retriturado representa una alternativa viable para evaluar la sostenibilidad y el desempeño de este material. El uso de dicho agregado reciclado contribuye a reducir el impacto ambiental asociado con la extracción de los agregados naturales que conforman la mezcla.

De igual manera, resulta esencial examinar las características físico-mecánicas del concreto asfáltico modificado, con el fin de asegurar que cumpla con los criterios de calidad y resistencia necesarios para un desempeño óptimo en pavimentos.

Por lo cual nos lleva a plantear el siguiente problema:

1.1.1. Problema General

- ¿Cuáles son los resultados de evaluar las propiedades físico-mecánicas de un concreto asfáltico en caliente modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia?

1.1.2. Problemas Específicos

- ¿Cuáles son las propiedades físico-mecánicas del agregado grueso retriturado proveniente de la cantera Santa Cecilia?
- ¿Cuáles son los diseño de mezcla del concreto asfáltico en caliente, modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia?

- ¿Cuál es el diseño de mezcla que permite mejorar las propiedades físico-mecánicas del concreto asfaltico en caliente en comparación con el concreto asfáltico patrón?

1.2. Objetivos

1.2.1. Objetivo General

 Evaluar las propiedades físico-mecánicas de un concreto asfáltico en caliente, modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia.

1.2.2. Objetivos Específicos

- Determinar las propiedades físico-mecánicas del agregado grueso retriturado preveniente de la cantera Santa Cecilia.
- Formular los diseño de mezcla de un concreto asfaltico en caliente, modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia.
- Escoger el diseño de mezcla que permita mejorar las propiedades físico-mecánicas del concreto asfaltico en caliente.

1.3. Formulación de la Hipótesis

La adición de residuos de agregado grueso retriturado proveniente de la cantera Santa Cecilia mejora las propiedades físico-mecánicas del concreto asfaltico en caliente.

1.4. Justificación e Importancia

1.4.1. Justificación

- a. Justificación Técnica. La incorporación de residuos del agregado grueso retriturado en mezclas de concreto asfáltico en caliente permite explorar soluciones que podrían mejorar el desempeño físico-mecánico del pavimento. Esta investigación técnica busca determinar si dicha modificación incide favorablemente en parámetros como la estabilidad, el flujo y la resistencia, garantizando la funcionalidad y durabilidad del producto final bajo condiciones de carga y clima típicas del país.
- b. Justificación Ambiental. El uso de materiales reciclados, como el agregado grueso retriturado, contribuye a la reducción del impacto ambiental asociado con la extracción de recursos naturales. Esta propuesta busca minimizar la generación de residuos y fomentar prácticas sostenibles en el sector de la construcción vial, alineándose con los principios de economía circular y desarrollo sostenible.
- c. Justificación Económica. La reutilización de residuos del agregado grueso podría representar una alternativa más económica frente al uso exclusivo de materiales vírgenes. Esto permitiría reducir los costos de producción de las mezclas asfálticas sin comprometer su calidad.
- d. Justificación Social. La mejora y sostenibilidad de la infraestructura vial impacta directamente en la calidad de vida de la población, al facilitar el transporte, la conectividad regional y el acceso a servicios básicos. Esta investigación contribuye al desarrollo de soluciones viables que fortalezcan el crecimiento urbano y rural de manera equitativa.

1.4.2. Importancia

- a. Importancia Técnica. La investigación permite evaluar el comportamiento físico-mecánico del concreto asfáltico modificado con residuos del agregado grueso retriturado, lo cual puede aportar al desarrollo de mezclas más resistentes, duraderas y acordes con las exigencias del tránsito vehicular moderno. Sus resultados pueden ser aplicables en proyectos reales de pavimentación
- b. Importancia Ambiental. La reutilización de agregados retriturados reduce la demanda de extracción de recursos naturales, disminuyendo el impacto ambiental de la industria de la construcción. Este enfoque promueve prácticas sostenibles y aporta a los objetivos de desarrollo sostenible relacionados con la gestión de residuos y la protección del entorno.
- c. Importancia Económica. El empleo de materiales reciclados puede reducir los costos de producción de mezclas asfálticas, optimizando el uso de los recursos en obras públicas. Esto representa un beneficio potencial para entidades gubernamentales y empresas privadas que buscan soluciones más rentables en la ejecución de proyectos viales.
- d. Importancia Social. La mejora en la calidad y durabilidad de las vías tiene un efecto directo en la seguridad vial, la conectividad territorial y el acceso a servicios. Esta investigación contribuye a generar propuestas que inciden positivamente en la calidad de vida de la población y en el desarrollo socioeconómico de las regiones.

CAPITULO II

MARCO TEÓRICO

II. MARCO TEÓRICO

2.1. Antecedentes

2.1.1. Antecedentes Internacionales

Martinez (2021), en la ciudad de Bogotá, investigó la influencia de los distintos métodos de trituración del agregado fino en el concreto asfáltico en caliente. Para ello, produjo agregado fino triturado mediante tres tipos de maquinaria: trituradora de cono, impactor y molino de martillos. Posteriormente, comparó estos materiales utilizando un único diseño de mezcla y evaluó las propiedades mecánicas mediante la metodología Marshall. Los resultados evidenciaron que el tipo de trituración afecta directamente las características físico-mecánicas del agregado y, por ende, del concreto asfáltico. En particular, el agregado triturado con trituradora de cono presentó mejores propiedades, lo que sugiere que el método de trituración es un factor determinante en la calidad del material y su desempeño en mezclas asfálticas.

Por otro lado, (Yousify & Taher, 2021), en un artículo desarrollado en Irak, analizaron los efectos del empleo de agregados petreos más utilizados en su región: Pidra triturada y piedra caliza y su relación con las propiedades físico-mecánicas del concreto ásfaltico. Para ello, aplicaron la metodología Marshall con el fin de evaluar el desempeño de las mezclas. Concluyeron que ambos agregados cumplen con los parámetros requeridos para su aplicación, observándose además una variación en el contenido óptimo de ligante asfáltico: 4.2% para el diseño con piedra triturada y 6% para el diseño con piedra caliza. En este contexto la variación del agregado utilizado modifica directamente las porpiedades del CAC.

Aldana (2021), valuó las propiedades físicas y mecánicas de diferentes agregados en condiciones de laboratorio, estableciendo un diseño de mezcla aplicable para carreteras de segundo orden. Tras realizar ensayos de calidad y comparar los resultados, identificó que el agregado triturado presenta un mejor comportamiento en sus propiedades físicas y mecánicas en comparación con el agregado de arena de río. Además, destacó que el agregado triturado posee una graduación más adecuada según el tipo de granulometría.

2.1.2. Antecedentes Nacionales

Boza y Ríos (2022), analizaron los agregados de la Cantera Pedregal, evaluando su granulometría y determinando las propiedades físico-mecánicas de una mezcla asfáltica con miras a su futura aplicación. Para ello, emplearon la metodología Marshall, utilizando dos variaciones de agregado grueso retriturado en proporciones del 36% y 57%, comparándolas con un mismo diseño de mezcla. Se observó una diferencia significativa en las propiedades físico-mecánicas, destacando que el diseño con menor reemplazo del árido fino, es decir, al 36%, presentó la mejor relación estabilidad/flujo. Este estudio permitió identificar y establecer las bases para la incorporación o sustitución del árido fino por agregado grueso reciclado en distintas proporciones dentro de mezclas asfálticas.

2.1.3. Antecedentes Locales

Castro (2022), en su investigación, formuló como objetivo determinar la influencia de la incorporación de materiales triturados en un concreto asfáltico en caliente (CAC) convencional, los cuales fueron empleados en la ejecución de la vía de evitamiento en la ciudad de Chimbote, desde el kilómetro 10+000 hasta el 20+060. Para ello, aplicó la metodología Marshall, obteniendo como resultado que el diseño de mezcla requiere un 25% de agregado grueso retriturado (arena chancada secundaria), en función del peso total del agregado fino. Asimismo, se verificó que la mezcla cumple con los requerimientos establecidos en la normativa vigente, obteniéndose un contenido óptimo de asfalto del 5.2%.

Arroyo y Goycochea (2024), evaluaron el desempeño mecánico de una mezcla asfáltica modificada, empleando la metodología Marshall. Para ello, categorizaron los agregados provenientes de la Cantera Chero y las escorias negras, obteniendo un diseño de mezcla patrón compuesto por 41.9% de grava triturada, 53.2% de arena fina y 4.9% de finos (filler), con un contenido óptimo de asfalto (CA) del 5.7%, el cual cumplió con todos los parámetros requeridos. Posteriormente, modificaron la mezcla añadiendo escorias de acero en proporciones distintas como sustitución del árido fino, para comparar sus propiedades físicomecánicas con la mezcla patrón utilizaron la metodología Marshall. Este proceso permitió identificar y establecer las bases para la incorporación o sustitución del árido fino por material reciclado en mezclas asfálticas.

2.2. Marco Conceptual

2.2.1. Agregados Pétreos

Los agregados pétreos constituyen el mayor volumen de una mezcla de concreto asfaltico aproximadamente entre el 90-95%, por lo cual las propiedades y características de los agregados, ejercen una gran influencia sobre este tipo de mezclas.

2.2.2. Clasificación de los Agregados Pétreos

a. Según su Procedencia

- Agregados Naturales: Derivados del aprovechamiento de recursos naturales como depósitos de arrastres de ríos (arenas y grava de río), glaciares (canto rorado) y de canteras de diferentes rocas y piedras naturales (Montejo, y otros, 2013).
- Agregados Artificiales: Se derivan de materiales y procedimientos industriales, tales como arcillas expandidas, escorias de alto horno, residuos de construcción reciclados, entre otros. (Montejo, y otros, 2013).

b. Según su Densidad

Tabla 1Clasificación de los agregados según su densidad.

Tipo de conceto	Peso unitario aproximado, del concreto kg/m³	Peso unitario del agregado kg/m³	Ejemplo de utilización	Ejemplo de agregado
Ultraligero	500 – 800		Concretos para aislamientos	Piedra pómez Agregado ultraligero
Ligero	950 – 1350	480 – 1040	Rellenos y mampostería no estructural	Agregados ultraligeros
	1450 – 1950		Concreto estructural	Agregado ligeros
Normal	2250 – 2450	1300 - 1600	Concreto estructural y no estructural	Agregados de ríos y triturados
Pesado	3000 - 5600		Concreto para proteger de radiación	Hematita, barita corindón, magnetita

Nota: Tomado de Tecnología y patología del concreto armado (p,80-81), por (Montejo, y otros, 2013).

c. Según su Tamaño

- Grava: T.M. \geq 20 mm.

- Gravilla: T.M < 20 mm.

- Arena: Obtenido producto de la descomposición natural y la abrasión de las rocas,
 o por el manejo de conglomerados con conexiones apenas vinculadas.
- Grava Triturada: Como consecuencia de la trituración artificial de la roca.
- Arena Manufacturada: También conocida como arena triturada o arena chancada es
 obtenida de la molienda artificial de áridos gruesos como grava, roca o escoria
 (residuo mineral de hierro).

La grava y la gravilla son el producto de la descomposición natural y el desgaste de las rocas, o de la gestión de conglomerados poco vinculados.

Tabla 2Clasificación de los agregados según su tamaño.

Tamaño en mm	Denominación más común	Clasificación	Uso como agregado de mezclas
Inferior a 0.002	Arcilla	Fracción muy fina	No recomendable
0.002 - 0.074	Limo	Fracción fina	No recomendable
0.074 - 4.76	Arena	Agregado fino	Material apto para
#200 – #4			mortero o concreto
4.76 - 19.1	Gravilla	Agregado grueso	Material apto para
#4-3/4"			mortero o concreto
19.1 - 50.8	Grava	-	Material apto para
3/4" – 2"			mortero o concreto
50.8 - 152.4	Piedra	-	-
2" – 6"			
Superior a 152.4	Rajón, Piedra bola	-	Concreto ciclópeo
6"			

Nota: Tomado de Tecnología y patología del concreto armado (p,83), por (Montejo, y otros, 2013).

d. Según su Forma

Tabla 3Clasificación de los agregados según su forma.

Tamaño	Denominación más común	Ejemplo
Redondeadas	Completamente desgastada por el agua o limada	Piedra de río o playa,
	por frotamiento	arena del desierto, playa
Irregular	Irregularidad natural, o parcialmente limitada	Otras gravas pedernales
	por frotamiento y con orillas redondeadas	del suelo o de excavación
Escamosa	espesor < largo y ancho	Roca laminada
Angular	Posee orillas bien definidas que se forman en la	Rocas trituradas de todo
	intersección de caras más o menos planas	tipo, escoria triturada
Elongadas	Árido angular en donde su la longitud es	
	considerablemente mayor que sus otras dos	-
	dimensiones	

Nota: Adaptado de *Tecnología* y patología del concreto armado (p,83), por (Montejo, y otros, 2013).

e. Según su Textura Superficial

Tabla 4 *Clasificación en función de su textura superficial.*

Textura	Características	Ejemplo
Vítrea	Fractura concoidal	Pedernal negro, escoria
		vítrea
Lisa	Deteriorado por agua, o liso debido a la fractura	Gravas, pizarras,
	laminada o de grano	mármol, algunas
		reolitas
Granular	Fractura que muestra granos más o menos uniformemente redondeado	Arenisca
Áspera	Fractura áspera con partículas finos o medianos que contiene constituyentes cristalinos no fácilmente visibles	Basalto, felsita pórfido, caliza
Cristalina	Contiene constituyentes cristalinos fácilmente visibles	Granito, gabro, gneis
Apanalada	Poroso y con orificios visibles	Pómez, escoria
		espumosa, arcilla
		expandida

Nota: Tomado de Tecnología y patología del concreto armado (p,84), por (Montejo, y otros, 2013).

2.2.3. Residuos de Agregado Grueso Retriturado

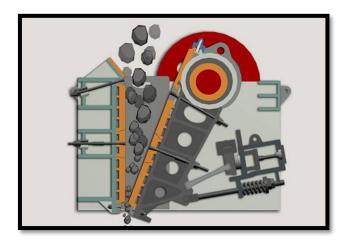
Montejo y otros, (2013), lo describe como el resultante de la trituración de los residuos del agregado grueso, por consiguiente, según la clasificación previamente vista sería:

Tabla 5 *Clasificación del agregado grueso retriturado*

Clasificación	Tipo	
Según su Procedencia	Agregado Natural	
Según su Densidad	Normal	
Según su Tamaño	Arena Manufacturada / arena triturada	
Según su Forma	Angular	
Según su Textura Superficial	Granular	

Nota: Tomado de Tecnología y patología del concreto armado (p,84), por (Montejo, y otros, 2013).

2.2.4. Propiedades de los Agregados


- a. Angularidad. Propiedad física que evalúa la angularidad, redondes y rugosidad del árido y que afectan la adherencia con el asfalto.
- **b.** Gravedad específica. Es una fundamental que indica la densidad relativa del agregado en comparación con la del agua. Esta propiedad influye directamente en el diseño de mezclas asfálticas, ya que afecta el cálculo de volúmenes, proporciones y la resistencia del concreto asfáltico.
- c. Absorción de agua. Esta propiedad es importante porque influye en la dosificación de mezclas, ya que los agregados con mayor absorción requieren un mayor control del contenido de agua o asfalto para asegurar la calidad, durabilidad y desempeño del concreto o mezcla asfáltica. Además, una alta absorción puede indicar la presencia de porosidad excesiva, lo que puede comprometer la resistencia del material.
- d. Índice de durabilidad. es una propiedad que evalúa la resistencia de los agregados pétreos a la desintegración cuando son sometidos a condiciones de desgaste, fricción o acciones mecánicas en presencia de agua. Este índice es particularmente importante para determinar la estabilidad del agregado frente a procesos de degradación durante el almacenamiento, manipulación, compactación o en servicio.
- e. Granulometría. Es una propiedad física de los agregados que describe la distribución del tamaño de las partículas que componen el material. Se determina mediante el paso del agregado por una serie de tamices normalizados con aberturas decrecientes, lo que permite clasificar el porcentaje de material retenido y pasado en cada tamaño de tamiz
- **f. Peso unitario.** Es una propiedad física importante para el diseño y control de mezclas asfálticas y concretos, ya que influye en la densidad de la mezcla, dosificación y estimación de volumen que ocupara los agregados en la mezcla.

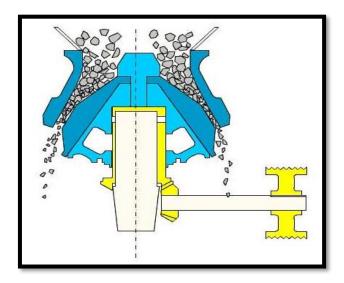
2.2.5. Proceso y Equipos de Trituración

a. Trituradora de Mandíbula. También denominado como triturador de quijada, estos aplican la compresión de forma discontinua por atrapamiento de dos mandíbulas, una fija y otra móvil a través de distintos sistemas de operación.

Figura 1 *Trituradora de Mandíbula corte transversal.*

Nota: Adaptado de AIMIX GROUP CO. (https://aimixtrituradora.com/tritruradora-de-quijada)

Figura 2 *Trituradora de Mandíbula.*



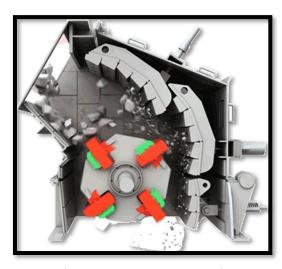
Nota: Adaptado de Omnia Machinery (https://www.omniamachinery.com/es/find-a-machine/metso-lt-106-jaw-crusher/)

b. Trituradora de Cono. Empleada para la trituración de materiales de dureza media, media y extremadamente alta, con una alta demanda de fragmentación y grandes capacidades de producción.

Figura 3 *Trituradora de Cono corte transversal.*

Nota: Adaptado de DASWEL (https://victoryepes.blogs.upv.es/files/2014/08/Cone-crusherworks.jpg)

Figura 4 Trituradora de Cono.



Nota: Tomado de WIRTGEN GROUP (https://www.wirtgen-group.com/es-pe/noticias-y-medios/kleemann/conexpo-mc-120-zi-pro/)

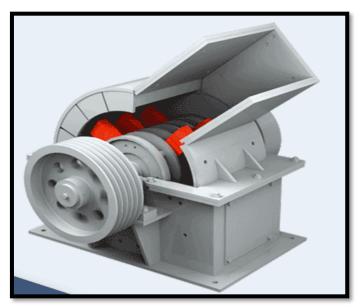
c. Trituradora de Impacto Eje Horizontal. Aplica una fuerza de forma abrupta mediante un choque o impacto, producido por la energía cinética diferencial entre el bloque a triturar y el movimiento rotatorio de una masa pesada conocida como rotor, que presenta salientes en forma de martillos o dientes extendidos. El material impactado es arrojado sobre una mandíbula fija, donde recibe impactos continuos y se subdivide en fragmentos cada vez más pequeños.

Figura 5 *Trituradora de Impacto Eje Horizontal corte transversal.*

Nota: Tomado de DASWELL

(https://daswell.com/kind/image/20220614/20220614094104 39870.gif)

Figura 6 *Trituradora de Impacto Eje Horizontal.*



Nota: Tomado de MACHINESEEKER (https://www.machineseeker.no/crushtek-startrack+1313i/i-12164843)

d. Trituradora de Molino de Martillos. Opera de manera muy parecida a la trituradora de impacto, con la diferencia de que este aparato tiene un tamaño reducido, por lo que la capacidad para almacenar el material es menor.

Figura 7 *Trituradora de Molino de Martillos corte transversal.*

Nota: Tomado de Fote Heavy Machinery

(https://www.ftmmachinery.com/uploads/image/20220315135540_36619.gif)

Figura 8 *Trituradora de Molino de Martillos.*

Nota:

Tomado

de

AIMIX

GRUOP

(https://aimixtrituradora.com/wp-

content/uploads/2020/08/Trituradora-de-Minerales-1280x720.jpg)

e. Trituradora de Rodillos. Las trituradoras de rodillos trituran el material por medio de compresión entre dos cilindros paralelos que giran en direcciones opuestas. Las tamaño nominal del material a obtener varía según la distancia entre los rodillos.

Figura 9 *Trituradora de Rodillos corte transversal.*

Nota: Tomado de Grau Tenichnic LTD

(https://www.grautechnic.com/es/productos/procesamiento-de-aridos/trituradoras/trituradoras-de-rodillo)

Figura 10 *Trituradora de Rodillos.*

2.2.6. Cemento Asfáltico

Derivado del petróleo, compuesta por largas cadenas de hidrocarburos y compuestos inorgánicos, Su comportamiento es viscoso o viscoelásticos, dependiendo de la temperatura. A bajas temperaturas, actúa como sólido, pero a medida que su temperatura aumenta, su comportamiento se vuelve líquido. (Villegas, y otros, 2012)

a. Propiedades Principales. Sus principales propiedades son la impermeabilidad, adhesividad, flexibilidad y resistencia al desgaste estas dos últimas siendo propiedades viscoelásticas, y las cuales en conjunto proporcionan soluciones duraderas y eficientes en su variedad de aplicaciones. (Loría, y otros, 2024)

Tabla 6 *Principales propiedades del cemento asfáltico.*

Impermeabilidad	Adhesividad	Flexibilidad	Resistencia al desgaste
	Se adhiere fuertemente		
El cemento asfáltico es	a varios tipos de	Puede adaptarse	Proporciona una
altamente impermeable al	superficie en el caso de	1	1
agua, lo que lo convierte en	las carreteras, es	a cambios de	superficie
	,	temperatura y	resistente al
•	adhesivo a materiales	movimientos del	desgaste
prevenir la infiltración de	Ç ,	suelo sin	causado por el
esta en carreteras y	agregados, formando	agrietarse	tráfico vehicular
estructuras	una capa sólida y	B.1.4	
	duradera		

Nota: Tomado de Introducción a los cementos y ligantes asfálticos: caracterización, reología y producción (p,24), por (Loría, y otros, 2024).

2.2.7. Mezclas Asfálticas

Compuestas por una mezcla de aproximadamente (90-95%) áridos y un ligante hidrocarbonado, en ocasiones se emplea polvo mineral (filler) como adicional; estas mezclas se elaboran en instalaciones fijas o portátiles, después se traslada a campo, allí se conforma y compactan. (Kraemer, y otros, 2004).

- a. Aspectos Funcionales. Sus principales aspectos según su funcionabilidad en cuanto a su aplicación en carreteras (capa de rodadura) son:
 - La adherencia del neumático al firme.
 - Las proyecciones de agua en tiempo de lluvia.
 - Reducir el deterioro de los neumáticos.
 - El ruido en el exterior y en el interior del vehículo.
 - La comodidad y estabilidad en marcha.
 - Las cargas dinámicas del tráfico.
 - La resistencia a la rodadura (consumo de carburante).
 - El envejecimiento de los vehículos.
 - Las propiedades visuales.
- b. Propiedades Principales: Cuenta con varias propiedades, pero considerando su aplicación en carreteras (capa de rodadura), las principales propiedades físico-mecánicas a considerar y optimizar son:
 - Estabilidad
 - Flujo
 - Porcentaje de Vacíos (permeabilidad)
 - Durabilidad
 - Resistencia a la fatiga
 - Resistencia al deslizamiento

2.2.8. Clasificación de las Mezclas Asfálticas

a. Según las Áridos que lo Conforman

- Masilla asfáltica: Polvo mineral (filler) más ligante asfáltico.
- Mortero asfáltico: Árido fino + masilla asfáltica.
- Concreto asfáltico: Árido grueso + mortero asfáltico.
- Macadam asfáltico: Árido grueso + ligante asfáltico.

b. Según la Temperatura Puesta en Obra

- Mezcla asfáltica en Caliente (CAC Es aquella elaborada a altas temperaturas, según la viscosidad del ligante y colocada in situ con temperatura mayor a la temperatura ambiente.
- Mezcla asfáltica en frío: Es aquella mezcla donde el ligante suele ser una emulsión asfáltica y colocada en obra a temperatura ambiente.

c. Según el Porcentaje de Vacíos

- Mezclas Cerradas o Densas: Aquellas donde su porcentaje de vacíos es < 6%.
- Mezclas Semicerradas o Semidensas: Aquellas donde su porcentaje de vacíos es mayor al 6% pero menor al 12%.
- Mezclas Abiertas: Aquellas donde su porcentaje de vacíos es mayor al 12% pero menor al 20%.
- Mezclas Porosas o Drenantes: Aquellas donde su porcentaje de vacíos > 20%.

d. Según el Tamaño Máximo del Agregado Pétreo

- Mezclas Gruesas: T.M. del árido > 10mm
- Mezclas Finas: También llamado micro aglomerado o mortero asfáltico.

e. Según la Estructura del Agregado Pétreo

- Mezclas con Esqueleto Mineral
- Mesclas sin Esqueleto Mineral

f. Según la Granulometría

- Mezclas Continuas: Son aquellas conformadas por mezclas donde el agregado pétreo presenta gran variabilidad en sus tamaños.
- Mezclas Discontinuas: Son aquellas conformadas por mezclas donde el agregado pétreo presenta limitada variabilidad en sus tamaños.

2.2.9. Principales Propiedades de Mezclas Asfálticas

- a. Estabilidad Marshall. Es una propiedad mecánica fundamental del concreto asfáltico en caliente, que representa la capacidad de la mezcla para resistir cargas aplicadas sin experimentar fallas por corte o deformación excesiva. (Kraemer, y otros, 2004)
- b. Flujo Marshall. Propiedad mecánica que indica la deformación plástica total que sufre un CAC, hasta alcanzar su carga máxima. (Kraemer, y otros, 2004)
- c. Adherencia Agregado Asfalto. Es una propiedad físico-química, que determina la capacidad de la mezcla bituminosa para adherirse a los agregados y mantener la cohesión de la mezcla, de tal forma que previene las separación de los agregados que lo conforma, evitando la disgregación y el deterioro prematuro. (Kraemer, y otros, 2004)
- d. Resistencia a la Comprensión. Es una propiedad mecánica que evalúa la capacidad de la mezcla para resistir esfuerzos de carga axial sin fallar, siendo una herramienta válida para caracterizar la resistencia estructural del concreto asfáltico en caliente. (Kraemer, y otros, 2004)
- e. Contenidos de Vacíos. Es una propiedad física que mide el porcentaje de volumen de aire dentro de la mezcla compactada y que influye en la durabilidad y deformación.
- **f. Absorción del Agregado.** Es una propiedad física que determina la capacidad del agregado para absorber el asfalto, lo que afecta directamente al contenido efectivo de ligantes.

g. Gravedad Especifica. Propiedad física fundamental en el diseño y control de calidad del concreto asfáltico en caliente (CAC). Se define como la relación entre el peso de un volumen dado de material y el peso de un volumen igual de agua destilada a una temperatura estándar (generalmente 25 °C). En el caso de mezclas asfálticas, esta propiedad se utiliza para calcular parámetros volumétricos esenciales, como los vacíos totales.

2.2.10. Concreto Asfáltico

Es el material más empleado en la elaboración de capas de rodaduras en pavimentos flexibles a nivel global. Un conjunto de agregados revestidos con una película de material asfáltico. En este contexto, las mezclas asfálticas deben proporcionar ciertos atributos mecánicos y funcionales que favorezcan el rendimiento de la estructura del pavimento. (Bastidas Martinez & Rondón Quintana, 2020).

a. Ventajas Principales

- Son materiales resistentes y duraderos que resisten el envejecimiento y la oxidación.
- Baja porosidad, alta resistencia y rigidez, impermeabiliza superficialmente el pavimento.

b. Desventajas Principales

- Dado su escasa porosidad, la textura superficial no es la más adecuada para conseguir una adecuada fricción entre el neumático y el pavimento.
- Contribuyen a la creación de capas delgadas superficiales de agua durante lluvia,
 elevando la posibilidad del fenómeno de hidroplano y eleva el nivel de accidentalidad en las carreteras.
- Complejidad en la producción e instalación, dado que se extienden y compactan a altas temperaturas, afectando de manera adversa al medio ambiente debido a las emisiones producidas.

2.2.11. Parámetros para el Diseño de Concreto Asfaltico en Caliente

Ministerio de Vivienda, Construcción y Saneamiento (2021), en el Reglamento Nacional de Edificaciones, en el sub capitulo Norma CE. 010, menciona los requerimientos de los agregados y del concreto asflatico en caliente (CAC), los cuales se observan en las siguientes figuras.

Tabla 7 *Requerimientos de los agregados gruesos para CAC - RNE*

E	N	Requerimiento Altitud (msnm)		
Ensayos	Norma	< 3000	> 3000	
Pérdida en Sulfato de Sodio	NTP 400.016:1999	12 % máximo	10 % máximo	
Pérdida en Sulfato de Magnesio	NTP 400.016:1999	18 % máximo	15 % máximo	
Abrasión Los Ángeles	NTP 400.019:2002	40 % máximo	35 % máximo	
Índice de Durabilidad	MTC E-214 (1999)	35 % máximo		
Partículas chatas y alargadas*	ASTM D-4791 (1999)	15 % máximo		
Partículas fracturadas	MTC E-210 (1999)	Según Tabla 12		
Sales Solubles	NTP 339.152:2002	0.5% máximo		
Absorción	NTP 400.021:2002	1.00 %	Según Diseño	
Adherencia	MTC E-519 (1999)	+95		

Nota: *La relación a emplearse para la determinación es : 5/1 (ancho/espesor o longitud/ancho). Adaptado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 8 *Requerimientos de los agregados grueso para CAC - MTC.*

Evenue	Novema	Requerimiento Altitud (msnm)		
Ensayos	Norma	≤3000	≥ 3000	
Durabilidad (al Sulfato de Magnesio)	MTC E 209	18 % máximo	15 % máximo	
Abrasión Los Ángeles	MTC E 207	40 % máximo	35 % máximo	
Adherencia	MTC E 517	+95	+95	
Índice de Durabilidad	MTC E 214	35 % mín.	35 % mín.	
Partículas chatas y alargadas*	ASTM 4791	10 % máximo	10 % máximo	
Caras fracturadas	MTC E 210	85/50	90/70	
Sales Solubles Totales	MTC E 219	0.5 % máx.	0.5 % máx.	
Absorción*	MTC E 206	1.0 % máx.	1.0 % máx.	

Nota: Solo se permitirán porcentajes superiores si se garantizan las características de durabilidad de la mezcla asfáltica. Tomado de (MTC, 2013, pág. 266).

Tabla 9 *Requisitos para los árido finos para CAC - RNE.*

E	N T	Requerimiento Altitud (msnm)	
Ensayos	Norma	< 3000	> 3000
Equivalente de Arena	NTP 339.146:2000	Según	Tabla 13
Angularidad del agregado fino	MTC E-222 (1999)	Según Tabla 14	
Adhesividad (Riedel Weber)	MTC E-220 (1999)	4 % mínimo	6 % mínimo
Índice de Durabilidad	MTC E-214 (1999)	35 mínimo	
Índice de Plasticidad	MTC E-211 (1999)	Máximo 4	NP
Sales Solubles Totales	NTP 339.152:2002	0.5 % máximo	
Absorción	MTC E-205 (1999)	0.50%	Según Diseño

Nota: Tomado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 10 *Requerimientos de los agregados finos para CAC - MTC.*

Engayag	Norma	Requerimiento Altitud (msnm)		
Ensayos	Norma	≤ 3000	≥ 3000	
Equivalente de Arena	MTC E 114	60	70	
Angularidad del agregado fino	MTC E 222	30	40	
Azul de metileno	AASHTO TP 57	8 máx.	8 máx.	
Índice de Plasticidad (malla N°40)	MTC E 111	NP	NP	
Durabilidad (al Sulfato de Magnesio)	MTC E 209	-	18% máx.	
Índice de Durabilidad	MTC E 214	35 mín.	35 mín.	
Índice de Plasticidad (malla N.º200)	MTC E 111	4 máx.	NP	
Sales Solubles Totales	MTC E 219	0.5 % máx.	0.5 % máx.	
Absorción**	MTC E 205	0.5 % máx.	0.5 % máx.	

Nota: Tomado de (MTC, 2013, pág. 266)

Tabla 11 *Requerimientos para Caras Fracturadas para CAC.*

Tipos de Vías	Espesor	Espesor de Capa		
	< 100 mm	>100 mm		
Vías Locales y Colectoras	65/40	50/30		
Vías Arteriales y Expresas	85/50	60/40		

Nota: Tomado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 12 *Requerimientos del equivalente de Arena para CAC.*

Tipos de Vías	Equivalente Arena (%)
Vías Locales y Colectoras	45 mínimo
Vías Arteriales y Expresas	50 mínimo

Nota: Tomado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 13 *Requerimientos de angularidad del agregado fino.*

Tipos de Vías	Angularidad (%)		
Vías Locales y Colectoras	30 mínimo		
Vías Arteriales y Expresas	40 mínimo		

Nota: Tomado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 14 *Requerimientos de gradación de los áridos para CAC.*

Tr.		Porcentaje que pasa			
Tamiz	MAC-1	MAC-2	MAC-3		
25,0 mm (1")	100	-	-		
19,0 mm (3/4")	80-100	100	-		
12,5 mm (1/2")	67-85	80-100	-		
9,5 mm (3/8")	60-77	70-88	100		
4,75 mm (N°4)	43-54	51-68	65-87		
2,00 mm(N°10)	29-45	38-52	43-61		
425 μm (N°40)	14-25	17-28	16-29		
180 μm (N°80)	08-17	08-17	09-19		
75 μm (N°200)	04-08	04-08	05-10		

Nota: Tomado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 15Sustancias dañinas en los agregados.

Sustancia dañina	Criterio
Arcilla de terrones	Máx. 1%
Partículas deleznables	Según MTC E - 221
Material orgánico u otros materiales deletéreos	Máx. 0.5%

Nota: Adaptado de RNE – NTP CE. 010, por (MVCS, 2021)

Tabla 16 *Requisitos del CAC.*

	Cla	se de Me	zcla
Parámetro de Diseño	A	В	C
Marshall MTC E 504			
1. Compactación, número de golpes por lado (4)	75	50	35
2. Estabilidad (mínimo)	8.15	5.44	4.53
	kN	kN	kN
3. Flujo 0.01" (0.25mm)	8-14	8-16	8-20
4. Porcentaje de vacíos con aire (1) (MTC E 505)	3-5	3-5	3-5
5. Vacíos en el agregado mineral	Ver Tabla 423-10		3-10
Inmersión-Compresión (MTC E 518)			
1. Resistencia a la compresión Mpa mín.	2.1	2.1	1.4
2. Resistencia retenida % (mín.)	75	75	75
Relación Estabilidad/flujo (kg/cm) (3)	1.700-4.000		00
Resistencia conservada en la prueba de tracción indirecta AASHTO T 283	80 mín.		

Nota: Tomado de (MTC, 2013, pág. 272)

Tabla 17 *Requisitos de adherencia para CAC.*

		Requer	imiento
Ensayos	Norma	< 3000	>3000*
Adherencia (Agregado grueso)	MTC E 517	+95	
Adherencia (Agregado fino)	MTC E 220	4	
		mín.**	-
Adherencia (mezcla)	MTC E 521	-	+95
Resistencia conservada en la prueba de tracción	AASHTO T	-	80
indirecta	283		Mín.

Nota: Tomado de (MTC, 2013, pág. 272)

^{*} Mayor a 3000 msnm y zonas húmedas o lluviosas

^{**}Grado inicial de desprendimiento

Tabla 18Vacíos mínimos del agregado mineral.

	Vacíos mínimos en agregado mineral %		
Tamiz	Marshall	Superpave	
2.36 mm (N°8)	21	-	
4.75 mm (N°4)	18	-	
9.50 mm (3/8")	16	15	
12.5 mm (1/2")	15	14	
19.00 mm (3/4")	14	13	
25.0 mm (1")	13	12	
37.5 mm (1 ½")	12	11	
50.0 mm (2")	11.5	10.5	

Nota: Tomado de (MTC, 2013, pág. 273)

CAPITULO III

METODOLOGÍA

III. METODOLOGÍA

3.1. Enfoque

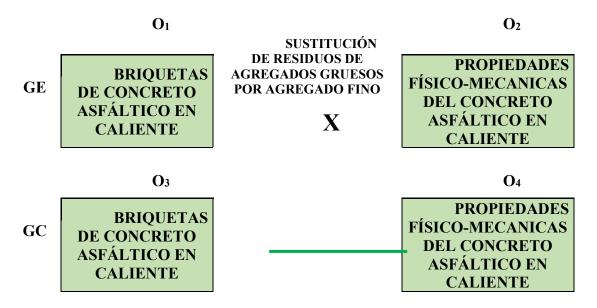
La investigación cuantitativa se enfoca en recopilar y analizar datos numéricos para medir y cuantificar variables, así como para identificar relaciones objetivas entre ellas. Este método pretende lograr resultados exactos y aplicables a diferentes contextos mediante la utilización de métodos estadísticos y herramientas matemáticas. (Borja Suaréz, 2012).

Por lo cual la presente investigación se clasifica como cuantitativa porque se basa en la recopilación y análisis de datos numéricos para evaluar las propiedades físico-mecánicas del concreto asfáltico modificado con residuos del agregado grueso retriturado. A través de ensayos estandarizados.

3.2. Método

3.2.1. Nivel o Alcance de la Investigación

El nivel correlacional de investigación corresponde a un diseño cuyo objetivo es examinar la relación o asociación entre dos o más variables mediante mediciones y análisis estadísticos, con el fin de determinar tanto la dirección (positiva o negativa) como la intensidad de dicha relación. (Borja Suaréz, 2012).


La presente investigación se clasifica como de nivel correlacional porque su objetivo principal es analizar la relación existente entre la proporción de agregado grueso retriturado y las propiedades físico-mecánicas del concreto asfáltico en caliente, sin manipular de manera experimental otras variables externas. A través de mediciones precisas y análisis estadísticos

3.2.2. Diseño de Investigación

Un diseño cuasi experimental es un tipo de diseño de investigación cuantitativa que busca establecer relaciones de causa y efecto entre variables, pero sin asignación aleatoria de los grupos o tratamientos. Es decir, se trabaja con grupos que ya están formados previamente o que no pueden asignarse al azar por razones prácticas o éticas. (Borja Suaréz, 2012).

La investigación se desarrolla bajo un diseño cuasi experimental, ya que implica la manipulación controlada de la variable independiente, porcentajes de residuos de agregado grueso retriturado, para evaluar su efecto en las propiedades físico-mecánicas del concreto asfáltico en caliente.

Donde:

GE: Grupo Experimental

GC: Grupo Control

X: Estímulo

-: Ausencia de estímulo

O1, O2 y O3: Observaciones de la variable dependiente pre estímulo

O1: Observaciones de la variable dependiente post estímulo

3.3. Población y Muestra

3.3.1. Población

"Desde un punto de vista estadístico, se denomina población o Universo al conjunto de elementos o sujetos que serán motivo de estudio" (Borja Suaréz, 2012).

Por lo cual en nuestra investigación nuestra población fue de tipo finita y estará conformada por los 72 testigos de concreto asfaltico en caliente elaborados.

3.3.2. Muestreo

En las muestras no probabilísticas, no se puede determinar tanto el error estándar como el nivel de probabilidad. En este escenario, la elección de los componentes no se basa en la elección de los elementos sino en el juicio del investigador. (Hérnades Sampieri, y otros, 2014).

La muestra fue de tipo por cuotas, el cual se eligió proporcional a la representatividad en la población total. (Borja Suaréz, 2012)

Tabla 19 *Matriz de diseño para estudio cuasi experimental.*

Criterio de evaluación	Cantidad
C1	X ₀₁
C2	X_{02}
C3	X_{03}
•	
•	•
N° MUESTRAS	$\sum X$

3.3.3. *Muestra*

La muestra se calculó el número de muestras mínimo para obtener una muestra representativa, con un nivel de confianza del 90%.

- n: Tamaño de la muestra
- Z: Coeficiente confiabilidad (1.65)
- e: Error estimado (10%)
- p: probabilidad e hipótesis verdadera (50%)
- q: probabilidad de no ocurrencia de la hipótesis (50%)

Obteniendo que se requirió un mínimo de 68 muestras de estudio.

Tabla 20 *Muestra para la investigación.*

Criterio de evaluación	Descripción	Cantidad
Diseño Marshall (Patrón)	03 especímenes por contenido de asfalto de 4.5, 5, 5.5, 6 y 6.5%	15
Diseño Marshall (Modificado)	04 especímenes por contenido de asfalto optimo y sustituyendo los finos con residuos de agregados grueso retriturado al 15, 25 y 35%	12
Porcentaje de Vacíos de Mezclas Asfáltica (MTC E 505)		9
Peso Específico Teórico Máximo de Mezclas Asfálticas		9
(MTC E 505) Porcentaje de Asfalto que Absorbe el Agregado en Mezclas Asfálticas (MTC E 511)	01 espécimen por contenido de asfalto de 4.5, 5, 5.5, 6 y 6.5%, optimo patrón y sustituyendo los finos con residuos de agregados	9
Resistencia a Comprensión simple de Mezclas Asfálticas (MTC E 513)	grueso retriturado al 15, 25 y 35%	9
Peso Específico Aparente y Peso Unitario de Mezclas Asfálticas (MTC E 514)		9
N° MUESTI	RAS	72

3.4. Variables y Operacionalización

3.4.1. Variable Independiente: Porcentaje de Residuos del Agregado Grueso Retriturado

- Definición Conceptual: Es un árido que se obtiene retriturando piedra o gravas y tamaños variables (Montejo, y otros, 2013).
- Definición Operacional: Corresponde a las dosificaciones experimentales del agregado grueso retriturado (RAGR) utilizadas en la mezcla asfáltica, expresadas como porcentaje del total del agregado fino, en porcentajes de 15%, 25% y 35%.

3.4.2. Variable Dependiente: Propiedades Físico-mecánicas del Concreto Asfáltico en Caliente

- Definición Conceptual: Los cementos asfálticos, tienen importantes propiedades que ayudan a que el recubrimiento tenga un mejor rendimiento y además están sujetos a diversas pruebas, las más destacadas son durabilidad, fluidez y penetración. (Bastidas Martinez & Rondón Quintana, 2020)
- Definición Operacional: Evaluación mediante ensayos de laboratorio método y los cuales deben cumplir con los requisitos para mezclas asfálticas especificadas en la normativa vigente.

3.5. Técnicas e Instrumentos de Recolección de Datos

Para la recolección de datos se empleó técnicas experimentales basadas en ensayos de laboratorio estandarizados que permitió evaluar las propiedades físico-mecánicas del concreto asfáltico modificado con residuos del agregado grueso retriturado.

Los principales instrumentos y técnicas utilizados fueron:

- Ensayo Marshall.
- Análisis granulométrico.
- Ensayo de densidad y absorción de los agregados
- Formatos de laboratorio.

Los instrumentos utilizados están validados por normas nacionales: N.T.P. C.E. 010 aprobado por DS N°010-2021, EG-2013 apropiado por RD N°22-2013-MTC/14, Manual de Ensayo de materiales aprobado por RD N°18-206-MTC-14, e internacionales aprobados los la American Society for testing and Materials (ASTM)

3.6. Técnicas de Análisis de Resultados

Los datos obtenidos de los ensayos de laboratorio serán organizados y analizados estadísticamente para evaluar el efecto de la incorporación del Residuos del Agregado Grueso Retriturado (RAGR) en las propiedades físico-mecánicas del concreto asfáltico en caliente. Se aplicarán técnicas descriptivas como cálculos de medias, desviaciones estándar y porcentajes para resumir los resultados.

Los resultados serán interpretados en función de los parámetros técnicos establecidos en normativas vigentes para concretos asfálticos, con el fin de identificar el diseño óptimo que mejore el desempeño y cumpla con los estándares requeridos

CAPITULO IV

RESULTADOS Y DISCUSIONES

IV. RESULTADOS Y DISCUSIÓN

4.1. Resultados

4.1.1. Propiedades Físico-mecánicas del Agregado Grueso Retriturado

Tabla 21Evaluación de propiedades físico-mecánicas del RAGR para CAC.

ENSAYO	RESULTADOS	NORMA	PARAMETRO	OBSERVACIÓN
Equivalente de Arena	73%	CE. 010	50% mín.	Cumple
Angularidad	43.6%	CE. 010	30% mín.	Cumple
Adhesividad	6	CE. 010	4 mín.	Cumple
Índice de Durabilidad	63.7	CE. 010	35 mín.	Cumple
Índice de Plasticidad MALLA N°40	N.P	CE. 010	N.P.	Cumple
Sales Solubles	0.44%	CE. 010	0.5 % máx.	Cumple
Absorción (MTC E 205)*	0.73%	EG - 2013	Según diseño	Cumple
Azul de Metileno	5.4	EG -2 013	8 máx.	Cumple
Arcilla en Terrones y Partículas desmenuzables	0.53%	CE. 010	1% máx.	Cumple
Material Fino que Pasa Tamiz N°200	0.36%	CE. 010	0.5% máx.	Cumple

Nota: El manual EG-2013, menciona que la absorción puede ser mayor a 0.5%, siempre que se asegure la propiedad de durabilidad de la mezcla.

Se apreció que el material RAGR ha estudiado, cumple con las requisitos para su utilización en pavimentos urbanos según la NTP CE. 010.

4.1.2. Diseño de Concreto Asfaltico en Caliente Modificado

Para el diseño de CAC modificado primero se diseñó un CAC sin modificar empleando la metodología Marshall, del cual se obtuvo el siguiente diseño.

Tabla 22Diseño del CAC patrón.

Descripción	Resultado
%Piedra Chancada	45%
%Arena zarandeada	55%
%Cemento asfáltico en peso de los agregados	5.53%

Posteriormente se realizó la modificación del porcentaje en peso de arena zarandeada por RAGR en porcentajes de 15%, 25% y 35%, las cuales se pueden visualizar en las tablas 80, 81 y 82 respectivamente.

Tabla 23Diseño del CACM15%.

Descripción	Resultado	
%Piedra Chancada	45%	
%Arena zarandeada	46.75%	
%RAGR al 15% de arena zarandeada	8.25%	
%Cemento asfáltico en peso de los agregados	5.53%	

Tabla 24Diseño del CACM25%.

Descripción	Resultado	
%Piedra Chancada	45%	
%Arena zarandeada	41.25%	
%RAGR al 25% de arena zarandeada	13.75%	
%Cemento asfáltico en peso de los agregados	5.53%	

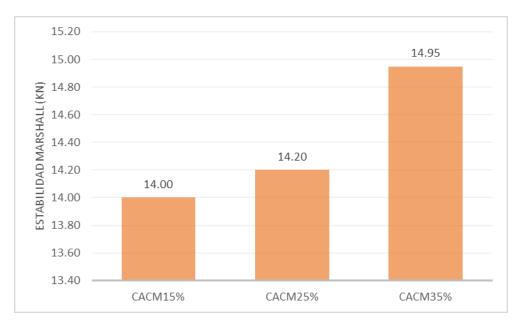
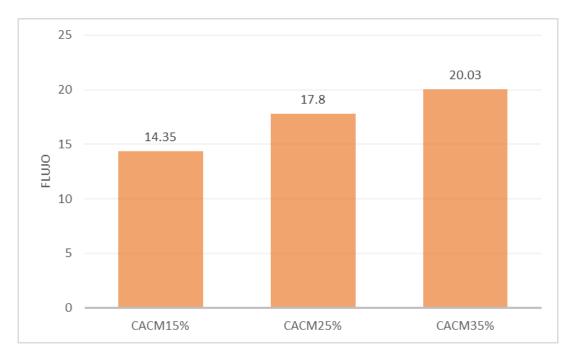


Tabla 25Diseño del CACM35%.

Resultado
45%
35.75%
19.25%
5.53%

4.1.3. Comparativo de muestras

Figura 11 *Estabilidad MARSHALL - CAC Modificado.*



Los resultados muestran que al incrementar el porcentaje de RACR, la estabilidad Marshall también aumenta de manera gradual. La mezcla con sustitución de arena zarandeada por 35% de RACR en peso alcanzó la mayor estabilidad (14.95 kN), superando a las mezclas con 25% y 15%.

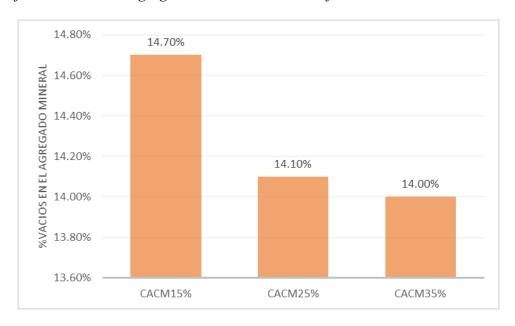
Las tres mezclas cumplen los requisitos reglamentarios y muestran un buen rendimiento mecánico en términos de resistencia a la deformación, ya que sus valores de estabilidad superan ampliamente el umbral mínimo de 5,44 kN necesario para las carreteras de tráfico medio. (MTC, 2013)

Figura 12 Flujo - CAC Modificado.

Se observaron porcentajes más altos de RAGR para mejorar de manera fiable el flujo de Marshall. La mezcla con 15% RAGR en peso tenía el valor de flujo más bajo (14,35), mientras que la mezcla con 35% RAGR en peso tenía el más alto (20,03).

Solo la mezcla del 15% cumple con los requisitos establecidos en la ley peruana más reciente (MTC, 2013)

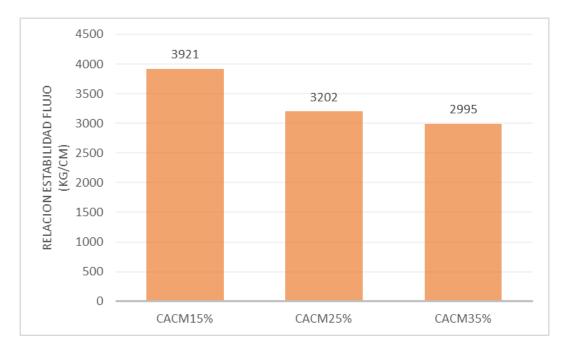
Una mezcla más blanda con menor resistencia a la deformación plástica puede ser indicada por muestras que superen el umbral superior, indicando una mayor propensión a generar surcos o deformaciones permanentes durante el servicio, especialmente en situaciones de alto volumen de tráfico o temperaturas.


Figura 13
Porcentaje de vacíos con aire - CAC Modificado.

Se observa que al aumentar el contenido de agregado grueso retriturado, el porcentaje de vacíos con aire disminuye ligeramente. Esta tendencia puede deberse a un mejor empaquetamiento de los agregados o a una mayor absorción del ligante asfáltico por parte del material reciclado, lo que reduce el espacio de aire en la mezcla.

Todas las mezclas cumplen con el rango normativo recomendado (3-5%) lo que sugiere que el nivel de compactación y la dosificación de asfalto han sido adecuadas (MTC, 2013)

Figura 14
Porcentaje de vacíos en el agregado mineral - CAC Modificado.



El VAM representa el espacio dentro de la matriz mineral (agregado) que puede ser ocupado por el asfalto y los vacíos con aire. Es un parámetro crítico para garantizar una buena adhesión entre el ligante y los agregados, por lo tanto, influye directamente en la durabilidad de la mezcla.

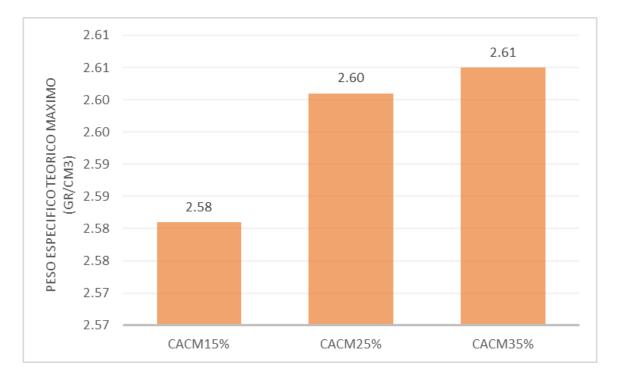
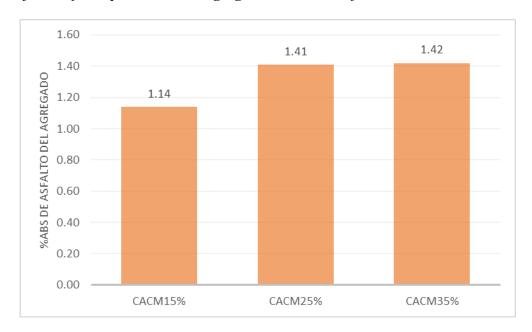

Se observa una ligera disminución del VAM a medida que se incrementa el porcentaje de agregado retriturado. Esta reducción podría estar relacionada con un mejor empaquetamiento de partículas o una mayor compactación de la mezcla. Así mismo todas las mezclas cumplen con el rango normativo recomendado de14% mín. (MTC, 2013)

Figura 15 *Relación estabilidad/flujo - CAC Modificado.*

La mezcla con sustitución de arena zarandeada por 15% de RACR tiene la mayor rigidez, lo que sugiere un excelente comportamiento estructural, con alta resistencia a la deformación, mientras que las otra muestras presentan una disminución progresiva de la rigidez, la cual está asociado al aumento del flujo como se observa en la Figura 12. Aun así, todas las mezclas cumplen con el rango normativo recomendado de 1700 a 4000 kg/cm (MTC, 2013)

Figura 16Peso específico teórico máximo - CAC Modificado.



Se observa una ligera tendencia ascendente en función al aumento del RAGR en la mezcla, la cual esta relacionad a una mayor densidad del RAGR.

El aumento progresivo del peso específico teórico máximo con el incremento del agregado retriturado indica que las mezclas tienden a ser ligeramente más densas, lo que puede favorecer la compactación y la resistencia mecánica siempre y cuando los vacíos con aire no sean demasiado bajos, como se ha comprobado en los resultados anteriores.

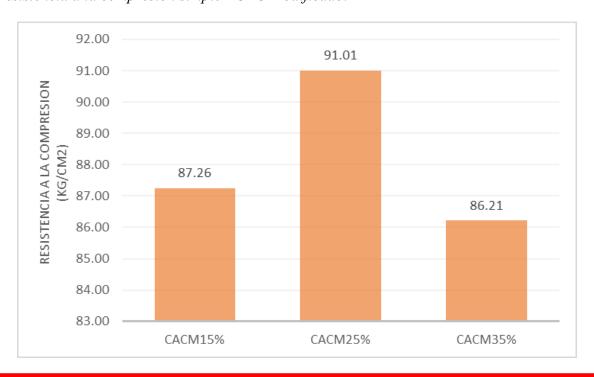
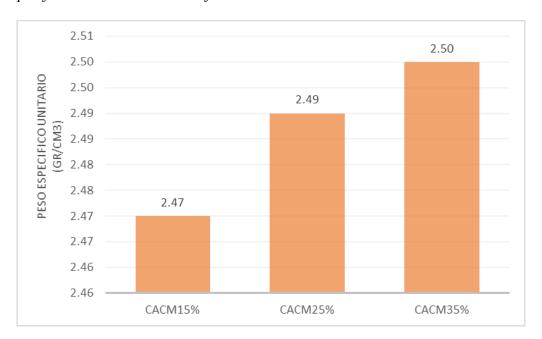


Figura 17 *Porcentaje de asfalto que absorbe el agregado - CAC Modificado.*

Se observa que a mayor contenido de agregado grueso retriturado, aumenta la absorción del asfalto, esto se debe a que los agregados retriturados suelen tener mayor porosidad y superficie rugosa, lo que favorece la absorción del ligante, pero si es excesiva compromete la trabajabilidad, la cual se contrasta en el aumento del flujo Marshall.


Figura 18 *Resistencia a la compresión simple - CAC Modificado.*

La resistencia más alta la presenta la mezcla con sustitución de arena zarandeada por 25% de RACR, lo que sugiere que esta dosificación tiene una mayor cohesión interna y buena adherencia agregado-ligante, la muestra al 15% tiene una resistencia apenas inferior, lo que indica un buen desempeño mecánico, con una mezcla más rígida como se vio en la relación estabilidad/flujo.

Figura 19 *Peso específico unitario - CAC Modificado.*

Se observa una ligera tendencia ascendente en el peso específico unitario al incrementar el contenido de RAGR, esto sugiere que, con más material retriturado, la mezcla logra una mayor compactación, debido a un mejor acomodamiento de partículas y a una densidad mayor del RAGR.

En función a los resultados obtenidos anteriormente se procedió a la comparación de resultados de una muestra patrón con el diseño de CAC sustituyendo el 15% de árido zarandeado por RAGR, debido a cumple todos los parámetros y requisitos establecidos por la normativa nacional vigente.

Tabla 26 *Comparativo de muestras.*

ENSAYO	CACP	CACM 15%
Estabilidad Marshall	12.56 KN	14.00 KN
Flujo 0.01" Marshall	15.84	14.35
Porcentaje de Vacíos con Aire	3.84%	4.00%
%VMA	13.93%	14.7%
Porcentaje de Vacíos llenados con C. Asf.	72.50%	73.1%
Relación Estabilidad / Flujo	3232 kg/cm	3921 kg/cm
Peso Específico Teórico Máximo	2.593 gr/cm3	2.581 gr/cm3
Porcentaje de Asfalto que Absorbe el Agregado	1.42%	1.14%
Resistencia a la Comprensión Simple	79.65 kg/cm2	87.26 kg/ cm2
Peso Específico Aparente	2.491 gr/cm3	2.479 gr/cm3
Peso Unitario	2.496 gr/cm3	2.47 gr/cm3

Se visualiza que existe una variación en las propiedades físico-mecánicas del CAC con el CACM15%, en las cuales existe un aumento de la estabilidad en un 11.5%, esto indica una mezcla más resistente estructuralmente; la reducción en el flujo, lo que indica una mezcla más rígida y con menor deformabilidad plástica, lo cual es deseable en capas estructurales para evitar deformaciones la cuales reflejan un relación estabilidad/flujo mayor, es decir un mejor equilibrio entre resistencia y deformabilidad.

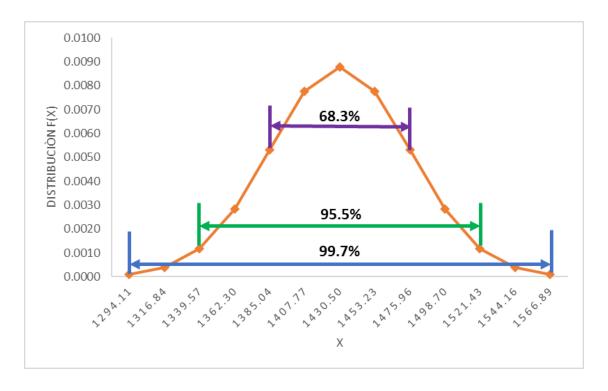

Así mismo un aumento en la resistencia a la compresión en un 9.5%, un mayor %VMA y un menor %asfalto absorbido lo que implica que hay más ligante efectivo, el cual favoreció a la cohesión de la mezcla propiedades claves para la durabilidad y desempeño bajo carga.

Tabla 27Resultados de datos estadísticos descriptivos — Estabilidad Marshall

Descripción	Resultado	
Número de datos (n)	4	
Media aritmética (\bar{x})	1430.50	
Desviación estándar (S)	45.46	
Coeficiente de variación (CV)	3.18%	
Mínimo	1380	
Máximo	1473	
Rango	93	

Figura 20Distribución normal – Estabilidad Marshall.

De acuerdo a la

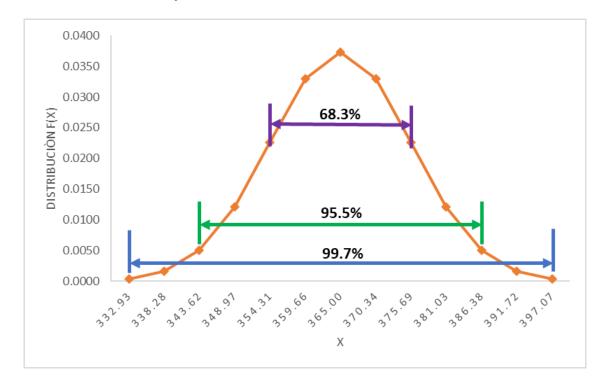

Figura 20 existe la probabilidad del 68.3% de que los valores de estabilidad Marshall este entre los valores de 1385.04 y 1475.96 Kg, una probabilidad del 95.5% entre 1339.57 y 1521.43 kg y una probabilidad del 99.7% entre los valores de 1294.11 y 1566.89 kg.

Tabla 28 *Resultados de datos estadísticos descriptivos — Flujo*

Descripción	Resultado	
Número de datos (n)	4	
Media aritmética (\bar{x})	365	
Desviación estándar (S)	10.69	
Coeficiente de variación (CV)	2.93%	
Mínimo	356	
Máximo	379	
Rango	23	

Figura 21 Distribución normal – Flujo.

De acuerdo a la

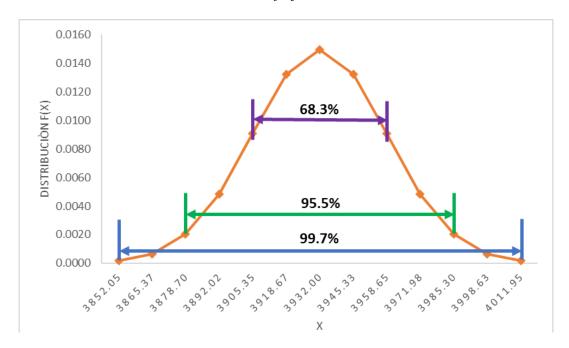

Figura 21 existe la probabilidad del 68.3% de que los valores de estabilidad Marshall este entre los valores de 354.31 y 375.69 mm, una probabilidad del 95.5% entre 343.62 y 386.38 mm y una probabilidad del 99.7% entre los valores de 332.93 y 397.07 mm.

Tabla 29Resultados de datos estadísticos descriptivos – Relación estabilidad / flujo

Descripción	Resultado	
Número de datos (n)	4	
Media aritmética (\bar{x})	3932	
Desviación estándar (S)	26.65	
Coeficiente de variación (CV)	0.68%	
Mínimo	3881	
Máximo	3938	
Rango	57	

Figura 22Distribución normal – Relación estabilidad / flujo.

De acuerdo a la **Figura 22** existe la probabilidad del 68.3% de que los valores de estabilidad Marshall este entre los valores de 3905.35 y 3958.65 kg/cm, una probabilidad del 95.5% entre 3878.70 y 3985.30 kg/cm y una probabilidad del 99.7% entre los valores de 3852.05 y 4011.95 kg/cm.

4.1.4. Prueba de hipótesis

La prueba de hipótesis formulada para a tesis, se centró en validar la afirmación que la adición de residuos de agregado grueso retriturado proveniente de la cantera Santa Cecilia aumenta las propiedades físico-mecánicas del concreto asfaltico en caliente.

Hipótesis nula (HO): La adición de residuos de agregado grueso retriturado proveniente de la cantera Santa Cecilia no aumenta las propiedades físico-mecánicas del concreto asfaltico en caliente.

Hipótesis alternativa (H1): La adición de residuos de agregado grueso retriturado proveniente de la cantera Santa Cecilia aumenta las propiedades físico-mecánicas del concreto asfaltico en caliente.

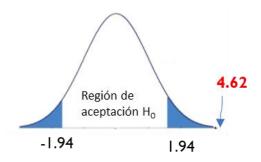
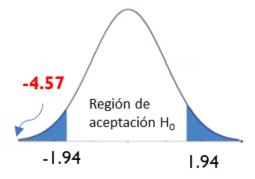

Para la prueba de hipótesis se realizó mediante la prueba T de Student, la cual nos permitió evaluar dos poblaciones, y la aplicamos en las propiedades de Estabilidad, flujo y relación estabilidad flujo, las cuales dan las características principales al funcionamiento de un CAC.

Tabla 30 *Resultados de datos para T de student – Estabilidad Marshall*

Descripción	CACP	CAC15%	
Número de datos (n)	4	4	
Media aritmética (\bar{x})	1282.00	1430.50	
Varianza (S)	2060	2067	
Varianza agrupada (Sc)	2063.50		
Grados de libertad	6		
Estadístico T	4.62		
α	0.1		
t crítico	1.94		
p-valor	0.0036		

Figura 23 *T de Student – Estabilidad Marshall.*



En la **Figura** 23 observamos en el gráfico que el valor estadístico T (4.62), se encuentra en la zona de rechazo, es decir se rechaza la hipótesis nula y se acepta la hipótesis alternativa.

Tabla 31 *Resultados de datos para T de student – Flujo*

Descripción	CACP	CAC15%
Número de datos (n)	4	4
Media aritmética (\bar{x})	400	365
Varianza (S)	120.15	114.25
Varianza agrupada (Sc)	117.20	
Grados de libertad	6	
Estadístico T	-4.57	
α	0.1	
t crítico	1.94	
p-valor	0.0038	

Figura 24 *T de Student – Flujo.*

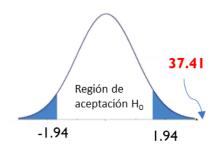

En la **Figura 24** observamos en el gráfico que el valor estadístico T (-4.57), se encuentra en la zona de rechazo, es decir se rechaza la hipótesis nula y se acepta la hipótesis alternativa.

Tabla 32 *Resultados de datos para T de student — Relación estabilidad / flujo.*

Descripción	CACP	CAC15%	
Número de datos (n)	4	4	
Media aritmética (\bar{x})	3232	3932	
Varianza (S)	690.45	710.25	
Varianza agrupada (Sc)	700.35		
Grados de libertad	6		
Estadístico T	37.41		
α	0.1		
t crítico	1.94		
p-valor	0.00000002		

Figura 25 T de Student – Relación estabilidad / flujo.

En la **Figura** 25 observamos en el gráfico que el valor estadístico T (37.41), se encuentra en la zona de rechazo, es decir se rechaza la hipótesis nula y se acepta la hipótesis alternativa.

4.2. Discusiones

Al realizar la prueba de hipótesis mediante la herramienta t de student se evidencio que la modificación del concreto asfaltico en caliente con residuos del agregado grueso retriturado mejora sus propiedades físico-mecánicas debido a que existe un 95% de que la estabilidad y relación estabilidad/flujo aumenten y el flujo disminuya. Por lo tanto, se rechaza la hipótesis nula y se aceptó la hipótesis alternativa, y se concluyó que al sustituir un 15% de RAGR por árido zarandeado en peso, se aumenta las propiedades fisco-mecánicas del CAC.

(Martinez Uribe, 2021) obtuvo que las propiedades del RAGR varian según la maquinara utilizada para la obtención del RAGR, propiedades que influyen directamente en el contenido de vacíos del CAC, %absorción de asfalto en el agregado y flujo, la cual en contraste con nuestra investigación podemos afirmar debido a que para nuestra investigación se hizo empleo de la tritura de rodillos obteniendo valores similares, propiedades que influyen directamente en el contenido de vacíos del CAC, %absorción de asfalto en el agregado y flujo, los cuales son esenciales para la determinación del contenido optimo de asfalto, obteniendo para su diseño un contenido de asfalto optimo de 5.3%, para la mezcla al 100% del árido fino sustituido por RAGR, la cual en contraste con nuestra investigación podemos afirmar debido a que para nuestro diseño con un contenido optimo de 5.53% los valores de flujo aumentan en función al aumento de contenido de RAGR en la mezcla.

Tabla 33 *Propiedades del RAGR según la procedencia de trituración.*

Propiedad		N	Rodríguez & Vinchales (2025)		
		Trituradora de cono	Trituradora de Impacto	Trituradora de Molino	Trituradora de Rodillos
Gravedad específica (gr/cm³)		2.659	2.653	2.654	2.824
%Absorción		0.867	0.735	0.783	0.73
Equivalente arena	de	59%	62%	61%	73%
Angularidad		49%	46.7%	47%	43.6%

Nota: Adaptado de (Martinez Uribe, 2021).

La tabla anterior constrasta los valores obtenidos de las popiedades del RAGR obtenido de la cantera Santa Cecilia, utilizando la trituradora de rodillos, los cuales se aprecian ligeras variacione, estas debidas principalmente a la gradación del agregados (angularidad).

Por otro lado (Aldana López, 2021) comparó los ensayos de calidad entre agregados naturales, como la arena de río y RAGR, concluyendo que el RAGR presenta un mejor comportamiento en sus propiedades físico-mecánicas. Este comportamiento se reflejó positivamente en el desempeño de la mezcla asfáltica, mejorando su resistencia y estabilidad. Los resultados de su estudio evidencian que la utilización de RAGR no solo es viable, sino que puede ser beneficiosa desde el punto de vista técnico.

Los ensayos realizados a la arena zarandeada y al RAGR en laboratorio permitieron evidenciar que este último posee cualidades técnicas destacables, tales como mayor angularidad y el equivalente de arena, estas características son determinantes para mejorar el comportamiento mecánico de las mezclas asfálticas, lo cual se reflejó directamente en parámetros como la estabilidad Marshall, el flujo, la resistencia a la compresión simple y la relación estabilidad/flujo.

Tabla 34 *Comparación de propiedades del RAGR y arena zarandeada.*

ENSAYO	ARENA ZARANDEADA	RAGR	PARAMETRO
Equivalente de Arena	68%	73%	50% mín.
Angularidad	41.6%	43.6%	30% mín.
Adhesividad	5	6	4 mín.
Índice de Durabilidad	65.7%	63.7	35 mín.
Sales Solubles	0.47%	0.44%	0.5 % máx.
Arcilla en Terrones y Partículas desmenuzables	0.69%	0.53%	1% máx.

Boza y Ríos (2022), evaluó dos mezclas una incorporando el 36% de RAGR y otra incorporando el 57% de RAGR, observando un aumento en la estabilidad del 1053 kg (36%RAGR) a 1421 kg (57%RAGR), esto implicado directamente en la relación E/F donde tambien se aprecia un aumento en el cual la mezcla al 57%RAGR, sobrepasa los limites establecidos en la normativa por lo cual no lo hace utilizable.

En comparación con los resultados obtenidos, se confirma que aumenta la estabilidad en función del adicionamiento del RAGR teniendo 1282 kg (0%RAGR) a 1524 kg (35%RAGR), estos aumentos significan que al aumentar RAGR en la mezcla aumenta la estabilidad por ende significa que la mezcla tiene mayor resistencia a la carga vigente, pero al adicirnar en cantidades mayores afecta la relación E/F lo cual modifica la cantidad del %C.A.

Castro Mendoza (2022), realizo un diseño de mezcla con la incorporación del 25% de RAGR por arido fino, en la cual optuvo un porcentaje obtimo de 5.20%, estabilidad de 1260 kg, un flujo de 3.43mm un indice de rigidez de 3679 kg/cm, así mismo esta cumple con los requerimientos establecidos por la normativa.

Comparado a los resultados obtenidos tambien para una mezcla al 25%RAGR, obtuvimos una estabilidad de 1448 kg, un flujo de 4.5mm y un índice de rigidez de 3202 kg/cm para un contenido optimo de asfalto de 5.53%, la diferencia entre contedidos de asfaltos refleja el aumento en el flujo la cual en nuestra investigación es mayor a la requerido por la normativa para su aplicación.

Arroyo y Goycochea (2024), en su investigación determino un diseño de CAC modificado con la adición de escoria negra de arrco eléctrico como arido fino, en porcentajes de 50%, 75% y 100%, obteniendo los mejores resultados en comparación con su muestra patrón, la muestra al 75%, la cual presenta un flujo dde 0.36cm, una estabilidad marshall de 1350 kg y un índice de rigidez de 3921 kg/cm.

Al comparar los resultados obtenidos en esta investigación con nuestra investigación realizada con 15%RAGR, presenta un comportamiento técnico competitivo e incluso superior en algunas propiedades clave, en primer lugar, la mezcla con RAGR mostró una mayor estabilidad Marshall 1428 kg frente a los 1350 kg reportados con escoria negra, epresentando un incremento del 3.7% en la capacidad de soportar cargas sin deformarse, esta mejora se complementa con un peso unitario más alto (2.47 g/cm³ frente a 2.379 g/cm³), lo cual puede reflejar una mayor densidad y mejor compactación de la mezcla con RAGR.

Respecto al flujo Marshall, ambas mezclas presentan valores similares (0.36 cm para RAGR y 0.34 cm para escoria), indicando que ambas ofrecen un adecuado balance entre rigidez y flexibilidad. El factor de rigidez (relación estabilidad/flujo) fue de 3921 kg/cm en la mezcla con RAGR, y de 3979 kg/cm en la mezcla con escoria negra, siendo prácticamente equivalentes y mostrando que ambas poseen una capacidad comparable para resistir deformaciones bajo cargas repetidas.

En cuanto a la estructura volumétrica de la mezcla, el porcentaje de vacíos con aire fue de 4.0% en la mezcla con RAGR y 3.4% en la mezcla con escoria, mientras que el %VMA fue de 14.7% y 15.1% respectivamente. Estos valores indican que ambas mezclas se encuentran dentro de los rangos admisibles según la normativa técnica, sin comprometer la durabilidad ni la estabilidad del ligante asfáltico.

Finalmente, es importante destacar que todos estos resultados se obtuvieron en la mezcla con RAGR utilizando un menor contenido óptimo de asfalto (5.53% frente a 5.7%), lo que sugiere una mayor eficiencia en el uso del ligante y un posible beneficio económico.

En conjunto, estos resultados respaldan la evidencia existente en la literatura sobre los beneficios del uso de materiales reciclados en mezclas asfálticas. Así, se refuerza la idea de que la incorporación controlada de RAGR puede contribuir a la sostenibilidad de la infraestructura vial, sin sacrificar calidad ni desempeño estructural.

Además, mediante la aplicación de la prueba de hipótesis, se confirmó que la mezcla con 15% de RAGR mostró diferencias significativas en las propiedades físico-mecánicas respecto a la mezcla convencional, particularmente en la mejora de la estabilidad estructural sin comprometer el contenido de vacíos ni el comportamiento volumétrico. Esto sugiere que el uso de RAGR, en proporciones adecuadas, no solo es viable, sino también recomendable desde una perspectiva técnica, económica y ambiental.

El aporte de la investigación radica en su implicación en el diseño y la producción de CAC, debido a que la incorporación RAGR, ofrece una alternativa viable para la gestión de residuos en las canteras, así como para la mejora de las propiedades físico-mecánicas contribuyendo en una mayor vida útil de las estructuras de pavimento flexible.

Este estudio presenta la limitación de que el estudio de los agregados utilizados se realizó únicamente de una fuente la cual es la Cantera Santa Cecilia y no podrían generalizarse para otra fuente de extracción.

CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

V. CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

Respecto al primer objetivo específico el cual fue "Determinar las propiedades físicomecánicas del agregado grueso retriturado preveniente de la cantera Santa Cecilia", se
concluyó que en base a los resultado que el RAGR proveniente de la cantera Santa Cecilia
puede ser utilizado como árido fino, puesto que cumple con los requisitos decretado por la NTP
CE 010 y el Manual EG-2013 para su uso en la elaboración de CAC, ensayos como
granulometría, absorción, adherencia, equivalente de arena, entre otros, confirmaron que el
RAGR posee características técnicas adecuadas para ser incorporado en mezclas asfálticas sin
comprometer su calidad.

Por tanto, se concluye que el empleo de RAGR como agregado fino no solo es compatible con las especificaciones normativas, sino que también representa una alternativa eficaz y ambientalmente responsable para el diseño de mezclas asfálticas de alto desempeño.

Respecto al segundo objetivo específico el cual fue "formular los diseños de un concreto asfaltico en caliente modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia", se realizó un diseño de mezcla con una muestra convencional donde se obtuvo un 45% de agregado, 55% de fino y el contenido optimo de asfalto del 5.53%.y se modificó los porcentajes del árido fino por RAGR obteniendo en base a los resultados el diseño optimo de:

Tabla 35Diseño de CAC modificado.

Porcentajes de diseño	
Agregado grueso (45%)	
Piedra Chancada	45.00%
Agregado fino (55%)	
Arena Zarandeada (85%)	46.75%
Residuos del agregado grueso retriturado (15%)	8.25%
Total	100%
C.A. (PEN)	60-70
%C.A en peso de la mezcla	5.53%

Respecto al tercer objetivo específico el cual fue "Escoger un diseño de mezcla que mejore las propiedades físico-mecánicas del concreto asfaltico en caliente" se concluye que la mezcla modificada con un 15% de RAGR presenta mejoras significativas en comparación con la mezcla patrón (convencional).

En concreto, se observó un incremento del 12% en la estabilidad Marshall (14 kN frente a 12.56 kN), una reducción del 10% en el flujo (0.36 cm frente a 0.40 cm), un aumento del 21% en la relación estabilidad/flujo (3921 kg/cm frente a 3232 kg/cm), y una mejora del 10% en la resistencia a la compresión simple (87.26 kg/cm² frente a 79.65 kg/cm²).

Estos resultados evidencian que la mezcla con 15% de RAGR ofrece un mejor equilibrio entre rigidez y deformabilidad, mayor durabilidad estructural y una resistencia superior a las cargas de tránsito, convirtiéndola en una opción más eficiente y sostenible para su aplicación en pavimentos flexibles.

5.2. Recomendaciones

Se recomienda emplear un 15% de agregado grueso retriturado (RAGR) como porcentaje ideal en la elaboración de concreto asfáltico en caliente (CAC), ya que esta dosificación logró un equilibrio entre estabilidad, resistencia y comportamiento volumétrico sin comprometer la calidad estructural del pavimento.

Se recomienda realizar un diseño de mezcla asfáltica empleando exclusivamente RAGR como reemplazo total del agregado fino, con el objetivo de evaluar su comportamiento estructural, durabilidad y viabilidad técnica en condiciones extremas. Esta propuesta permitiría determinar los límites de desempeño del RAGR y su potencial como insumo principal en mezclas asfálticas. (Yousify & Taher, 2021)

Para futuras investigaciones, se aconseja evaluar otras dosificaciones RAGR, particularmente en rangos intermedios como el 10%, 12.5%, 17.5% y 20%, con el fin de identificar con mayor precisión el punto óptimo de desempeño de la mezcla asfáltica. Esta exploración más detallada permitiría establecer una curva de comportamiento físico-mecánico más completa, optimizar el diseño de mezcla en función de criterios técnicos y económicos. (Boza y Ríos, 2022).

Dado que se observó un aumento en la deformación bajo carga (flujo) a medida que aumentaba el contenido de agregado grueso retriturado, se recomienda determinar un nuevo contenido optimo de asfalto para los modificados al 25% y 35% con la finalidad de obtener resultados que cumplan con el parámetro establecido por la NTP CE 010 y poder determinar cuanta es la variación del %CA, y si esta variación produce alguna mejora técnica u económica. (Castro Mendoza, 2022)

Se recomienda realizar más estudios al RAGR, comparándolo con otros materiales reciclados como la escoria negra de alto horno, residuos cerámicos, plásticos reciclados, entre otros, bajo un mismo diseño, con el objetivo de identificar cuál de estos ofrece un mejor desempeño en mezclas asfálticas en términos de estabilidad, durabilidad, comportamiento volumétrico y respuesta ante condiciones ambientales adversas. Este tipo de investigaciones comparativas no solo permitirá ampliar el conocimiento técnico sobre el uso de materiales alternativos en pavimentos flexibles, sino también fomentar la sostenibilidad mediante la reutilización de residuos industriales y de construcción, reduciendo así la dependencia de recursos naturales y el impacto ambiental asociado a la infraestructura vial. (Arroyo y Goycochea, 2024)

CAPITULO VI

REFERENCIAS BIBLIOGRÁFICAS

REFERENCIAS BIBLIOGRÁFICAS

- AASHTO. (2016). AASHTO TP 57: Standard Test Method for Methlene Blue Value of Fine Aggregate.
- Aldana López, J. A. (2021). Análisis y comparación de las propiedades físicas y mecánicas de un diseño de mezcla para micropavimentos, utilizando arena de río y arena triturada como agregado fino, aplicado a carreteras de segundo orden. Trabajo de Graduación, Universidad de San Carlos de Guatemala, Facultad de Ingeniería, Guatemala, Guatemala.
- Arroyo Rodríguez, J. D., & Goycochea De La Cruz, P. A. (2024). Evaluación del comportamiento mecánico de mezclas asfálticas en caliente modificadas con escoria negra de horno de arco eléctrico Chimbote 2022. Tesis para obtener el título profesional de Ingeniero Civil, Universidad Nacional del Santa, Facultad de Ingenieria, Nuevo Chimbote. Perú. Obtenido de https://repositorio.uns.edu.pe/handle/20.500.14278/4604

Asphalt Institute. (2007). Asphalt Handbook (MS-4).

- ASTM INTERNATIONAL. (2011). ASTM C 123: Standard Test Method for Lightweight Particles in Aggregate. Obtenido de https://www.astm.org/c0123-04.html
- ASTM INTERNATIONAL. (2011). ASTM D 3398: Standard Test Method for Index of Aggregate Particle Shape and Texture. Obtenido de https://www.astm.org/jai103664.html
- ASTM INTERNATIONAL. (2013). ASTM D 5821: Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate. Obtenido de www.astm.org
- ASTM INTERNATIONAL. (2017). ASTM C289-94: Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates. Obtenido de https://www.astm.org/c0289-94.html

- ASTM INTERNATIONAL. (2017). ASTM D 3665: Standard Practice for Random Sampling of Construction Materials (Vol. 04.03). ASTM INTERNATIONAL. doi:10.1520/D3665-12R17
- ASTM INTERNATIONAL. (2018). ASTM D 3744: Standard Test Method for Aggregate Durability Index. Obtenido de https://www.astm.org/d3744_d3744m-18.html
- ASTM INTERNATIONAL. (2021). ASTM D 1559: Test Method for Resistance of Plastic Flow of Bituminous Mixtures Using Marshall Apparatus (Withdrawn 1998). Obtenido de https://www.astm.org/d1559-89.html
- ASTM INTERNATIONAL. (2023). ASTM D 4791: Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate. Obtenido de https://www.astm.org/d4791-19.html
- ASTM INTERNATIONAL. (2024). ASTM D 546: Standard Test Method for Sieve Analysis of Mineral Filler for Bituminous. Obtenido de https://www.astm.org/d0546-17.html
- Bastidas Martinez, J. G., & Rondón Quintana, H. A. (2020). Caracterización de mezclas de concreto asfáltico. Bogotá, Colombia: Universidad Piloto de Colombia.
- Borja Suaréz, M. (2012). *Metodología de la investigación científica para ingenieros*. Chiclao, Perú.
- Boza Carbonelli, D. K., & Ríos Chávez, M. S. (2022). Análisis de la granulometría de los agregados de la cantera El Pedregal y su influencia en las mezclas asfálticas en caliente en la ciudad de Abancay, 2019. Tesis para obtener el Titulo de Ingeniero Civil, Universidad Técnologica de los Andes, Facultad de Ingeniería, Apurimac, Perú. Obtenido de https://repositorio.utea.edu.pe/items/3bd1c4dd-04e5-4813-89a0-79e4c04c0aa0
- Castro Mendoza, J. M. (2022). Análisis de mezclas asfálticas con materiales triturados de canteras empleados Vía Evitamiento Chimbote Km 10+000 al 22+060 2022. Tesis

- para obtener el Titulo profesiona de Ingeniero Civil, Universidad César Vallejo, Facultad de Ingeniería y Arquitectura, Trujillo, Perú. Obtenido de https://repositorio.ucv.edu.pe/handle/20.500.12692/116282
- Celís Sanabria, B. J., & Monsalve Saenz, L. M. (2023). Análisis de la viabilidad en la sustitución de agregado fino por residuos de relave minero en mezclas asfálticas en caliente a partir de ensayos de laboratorio. Trabajo de Grado, Universidad de Santander, Facultas de Ingenierías y Tecnologías, Bogotá, Colombia. Obtenido de https://repositorio.udes.edu.co/entities/publication/a9043c81-911e-4479-be13-a3fd1d34368b
- Garnica Anguas, P., Delgado Alamilla, H., Gómez López, J. A., Romero, S. A., Alarcón Orta, H. A., 1, . . . 3. (2004). Aspectos del diseño volumétrico de mezclas asfálticas.

 *Publicación Tecninca No 246, 67. Obtenido de https://www.imt.mx/archivos/publicaciones/publicaciontecnica/pt246.pdf
- Hérnades Sampieri, R., Férnandez Collado, C., Baptista Lucio, P., 1, 2, 3, & 4. (2014). *Metodología de la Invetigacion* (Vol. 6ta Edición). México D.F., México: McGRAE-Hill Educatin.
- Instituto Nacional de Calidad. (2021). NTP 400.012. Norma Técnica Peruana, 29.
- INVIAS. (2007). Normas de Ensayo de Materiales para Carreteras. Bogotá, Colombia.
- Kraemer, C., Pardillo, J. M., Rocci, S., Romana, M. G., Blanco, V. S., & Del Val, M. Á. (2004). *Ingeniería de carreteras* (Vol. II). España: McGraw-Hill.
- Loría, L. G., Villegas Villegas, R. E., Castillo Camarena, E. A., Cudrado Valbuena, R. E., 1,
 2, & 3. (2024). Introducción a los cementos y ligantes asfálticos: caracterización,
 reología y producción. Panamá.
- Martinez Uribe, Z. K. (2021). Influencia de la trituración del agregado fino en la mezcla asfaltica en caliente de gradación continua MDC-19 INVIAS. Tesis para obtar el título

- de Especialista en Ingenieria de Pavimentos, Universidad Militar Nueva Granada, Facultad de Ingenieria, Bogotá, Colombia. Obtenido de https://repository.unimilitar.edu.co/items/ea343a66-8186-44eb-ae51-cf1a2d7b551c
- Ministerio de Vivienda, Construcción y Saneamiento. (2021). *Reglamento Nacional de Edificaciones*. Lima. Obtenido de https://www.gob.pe/institucion/vivienda/informes-publicaciones/2309793-reglamento-nacional-de-edificaciones-rne
- Montejo, A., Montejo Piratova, F., Montejo Piratova, A., 1, 2, 3, & 4. (2013). *Tecnología y patología del concreto armado*. Bogotá, Colombia: Universidad Católica de Colombia.
- MTC. (2013). Manual de carreteras: Especificaciones técnicas generales para construcción.
 Lima, Perú: Ministeriorio de Transportes y Comunicaciones. Obtenido de https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuale s/MANUALES%20DE%20CARRETERAS%202019/MC-01-13%20Especificaciones%20Tecnicas%20Generales%20para%20Construcci%C3%B3 n%20-%20EG-2013%20-%20(Versi%C3%B3n%20Revisada%20-%20JULIO%20
- MTC. (2016). Manual de ensayos de materiales. Lima, Perú: Ministerio de Transporte y Comunicaciones. Obtenido de https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/documentos/manuale s/Manual%20Ensayo%20de%20Materiales.pdf
- Murillo Luza, T. D. (2021). Propiedades mecánicas de mezcla asfáltica en caliente modificado con residuos de ignimbrita para vías de alto tránsito, Arequipa 2021. Tesis para obtener el título profesional de Ingeniero Civil, Universidad César Vallejo, Facultad de ingeniería y Arquitectura, Lima, Perú. Obtenido de https://repositorio.ucv.edu.pe/handle/20.500.12692/68112
- Organización para la Cooperación y el Desarrollo Económicos. (2021). *Informe sobre Infraestructura de Transporte*.

(2012). Calibracion de modelos basados en curvas maestras para temperaturas de mezclado y compactacion en Costa Rica. *VIII Jornada Internacional del Asfalto*.

Obtenido de https://www.lanamme.ucr.ac.cr/repositorio/bitstream/handle/50625112500/723/Calibr aci%C3%B3n%20de%20modelos%20basados%20en%20curvas%20maestras%20par a%20temperaturas%20de%20mezclado%20y%20compactaci%C3%B3n%20en%20C R.pdf?sequence=1&isAllowed=y

Villegas, R. E., Aguilar Moya, J. P., Rodriguez Castro, E., Loria Salazar, L. G., 1, 2, & 3.

Yousify, S., & Taher, S. (2021). An evaluation of the effect of aggregate type on hot mix asphalt properties in Kurdistan Region of Iraq. *The Journal of University of Duhok*, 13. doi:10.26682/sjuod.2021.24.2.13

CAPITULO VII

ANEXOS

ANEXO 1. MATRIZ DE CONSISTENCIA Y OPERACIONALIDAD

MATRIZ DE CONSISTENCIA

TÍTULO	PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES
	GENERAL	GENERAL		<u>VARIBLE</u>
	¿Cuáles son los resultados de evaluar las	Evaluar las propiedades físico-mecánicas de un		<u>DEPENDIENTE</u>
	propiedades físico-mecánicas de un concreto	concreto asfáltico en caliente, modificado con		Propiedades físico-
"EVALUACIÓN DE	asfáltico en caliente modificado con residuos	residuos del agregado grueso retriturado		mecánicas del
PROPIEDADES	del agregado grueso retriturado proveniente de	proveniente de la cantera Santa Cecilia.	"La adición de	concreto asfáltico en
FÍSICO-MECÁNICAS	la cantera Santa Cecilia?		residuos de	caliente.
DEL CONCRETO	<u>ESPECÍFICOS</u>	<u>ESPECÍFICOS</u>	agregado grueso	VARIABLE
ASFÁLTICO EN	¿Cuáles son las propiedades físico-mecánicas	Determinar las propiedades físico-mecánicas	retriturado	INDEPENDIENTE
CALIENTE	del agregado grueso retriturado proveniente de	del agregado grueso retriturado preveniente de	proveniente de la	Porcentajes de
MODIFICADO CON	la cantera Santa Cecilia?	la cantera Santa Cecilia.	cantera Santa	residuos del
RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	¿Cuáles son los diseño de mezcla del concreto asfáltico en caliente, modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia?	Formular los diseño de mezcla de un concreto asfaltico en caliente, modificado con residuos del agregado grueso retriturado proveniente de la cantera Santa Cecilia.	Cecilia aumenta las propiedades físicomecánicas del concreto asfaltico en caliente"	agregado grueso triturado.
CECILIA	¿Cuál es el diseño de mezcla que permite mejorar las propiedades físico-mecánicas del concreto asfaltico en caliente en comparación con el concreto asfáltico patrón?	Escoger el diseño de mezcla que permita mejorar las propiedades físico-mecánicas del concreto asfaltico en caliente en comparación con el concreto asfáltico patrón.		

MATRIZ DE OPERACIONALIDAD

Variable	Definición Conceptual	Definición operacional	Dimensiones	Indicadores	Instrumentos	Técnica
VARIABLE INDEPENDIENTE: RESIDUOS DEL AGREGADO GRUESO RETRITURADO		Corresponde a las dosificaciones experimentales del agregado grueso retriturado (RAGR) utilizadas en la mezcla asfáltica, expresadas como porcentaje del total del	Dimensiones Clasificación Propiedades físicas	Granulometría Peso unitario Absorción Gravedad específica Angularidad Equivalente de arena Adhesividad agregado - ligante %Vacíos	Balanza Pala de Construcción Recipientes Horno Tamices Pinzas	Técnica Ensayos de Laboratorio
	agregado fino, en porcentajes de 15%, 25% y 35%.).	Propiedades mecánicas	Durabilidad al sulfato de sodio y sulfato de magnesio	Cucharones Reactivos		
		Propiedades químicas	Sales solubles Azul de Metileno			

Variable	Definición Conceptual	Definición operacional	Dimensiones	Indicadores	Instrumentos	Escala de dimensiones
VARIABLE DEPENDIENTE:	Los cementos asfálticos, tienen importantes propiedades que	Evaluación mediante ensayos de laboratorio	Propiedades Mecánicas	Estabilidad Flujo Resistencia a la comprensión simple	Aparato Marshall Máquina de ensayo de compresión	
PROPIEDADES FISICO- MECANICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	ayudan a que el recubrimiento tenga un mejor rendimiento y además están sujetos a diversas pruebas, las más destacadas son durabilidad, fluidez y penetración. (Bastidas Martínez & Rondón Quintana, 2020)	y los cuales deben cumplir con los requisitos para mezclas asfálticas especificadas en la normativa vigente	Propiedades Físicas	%Vacíos totales Peso específico Peso unitario Peso específico aparente Porcentaje de asfalto que absorbe el agregado total	Balanza Pala de Construcción Recipientes Horno Tamices Pinzas Cucharones	Ensayos de laboratorio

ANEXO 2. PROCEDIMIENTO DE ENSAYOS REALIZADOS EN LABORATORIO

1. MUESTREO PARA MATERIALES DE CONSTRUCCIÓN

Ejecutado con el objetivo de conseguir una representación apropiada de la calidad, propiedades y características de los áridos provenientes de la cantera, buscando controlar el cumplimiento de los requisitos técnicos y normativos. (ASTM INTERNATIONAL, 2017)

Así mismo menciona 4 tipos de muestros, del cual usaremos el tercer tipo, muestreo de despósitos o unidades de transporte.

El equipo a utilizar consiste en balanza, bolsas o contenedores y palas de construcción.

Tabla 1Pesos mínimos requeridos Ensayo MTC E 201.

Tamaño máximo nominal del agregado ^A	Masa mínima aproximada para la muestra de campo Kg ^B
Agregad	o fino
2.36 mm	10
4.76 mm	10
Agregado	grueso
9.5 mm	10
12.5 mm	15
19.0 mm	25
25.0 mm	50
37.5 mm	75
50.00 mm	100
63.00 mm	125
75.00 mm	150
90.00 mm	175

Nota: Tomado de (MTC, 2016, pág. 295).

Figura 1
Toma de muestra del árido fino zarandeado.

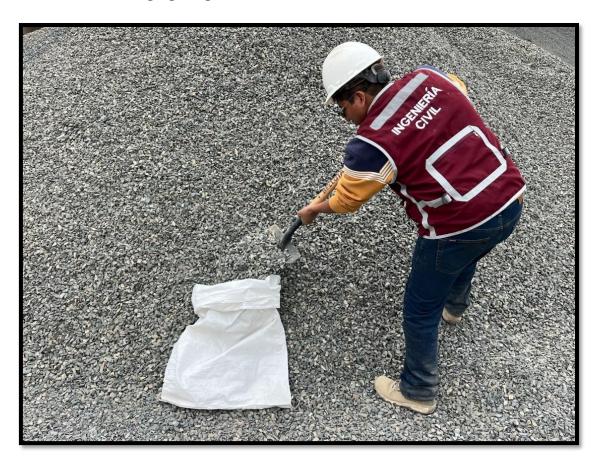


Figura 2
Toma de muestra del agregado grueso retriturado.

Figura 3 *Toma de muestra del agregado grueso triturado.*

Tabla 2 *Resultados de ensayo MTC E 201.*

Material	Peso	
Piedra chancada	25.70 kg	
Arena gruesa zarandeada	27.70 kg	
Agregado grueso retriturado	27.20 kg	

2. MATERIAL FINO QUE PASA EL TAMIZ DE 75 MM (Nº 200) POR LAVADO

La finalidad de este ensayo es poder separar del agregado mediante lavado aquellas partículas pasante de la malla N°200. (MTC, Manual de ensayos de materiales, 2016).

Equipos:

- Balanza.
- Estufa.
- Tamices N°200 (75 μm) y N°16 (1.18 mm)
- Bandejas y/o recipientes.

Procedimiento:

- Mediante cuarteo obtener una muestra representativa para posteriormente secar hasta obtener una masa constante.
- Obtener una muestra no menor al peso mínimo requerido de según la figura mostrada a continuación.

Tabla 3Pesos mínimos Ensayo MTC E 202.

T.M.N. de	T.M.N. del agregado		
4.75 mm	(N°4) o menor	300	
9.5 mm	(3/8")	1000	
19.0 mm	(3/4")	2500	
37.5 mm	$(1 \frac{1}{2})$ o mayor	5000	

Nota: Tomado de (MTC, 2016, pág. 295).

- Obtenido la muestra, se procede al lavado de los aridos mediante agitación, repitiendo el proceso de lavado hasta obtener un agual de lavado completamente clara.
- Secar el material obtenido en la estufa y pesar.

Figura 4 *Lavado de los agregados.*

Cálculos:

Ecuación 1

Porcentaje de material fino que pasa el tamiz N°200 por lavado

$$A = \frac{B - C}{B} x 100\%$$

Donde:

A = Muestra que pasa el tamiz $N^{\circ}200$ por lavado (%).

B = Peso seco del material original (gr).

C = Peso seco del material lavada (gr).

Tabla 4 *Resultados de ensayo MTC E 202.*

Material	A
Piedra chancada	0.04%
Arena gruesa zarandeada	0.26%
Agregado grueso retriturado	0.36%

3. PESO UNITARIO Y VACÍOS DE LOS ÁRIDOS

Utilizado para hallar el valor del el peso unitario y porcentaje de vacíos en estado suelto y compactado de los áridos, (MTC, 2016).

Equipos:

- Balanza.
- Regla.
- Recipiente de medida, metálico, cilíndrico, aprueba de agua con fondo y borde superior pulido, plano y superficialmente rígido, cuya relación altura diámetro sean iguales o altura no menor al 80% o mayor al 150% a la longitud del diámetro.
- Varilla compactadora de acero liso, cilíndrica de 16mm (5/8") de diámetro y un longitud de 24" (600mm)
- Pala/cucharón de mano.

Requisito previo:

- Obtener los datos de volumen y peso del recipiente vacío.

Figura 5
Obtención de datos del recipiente.

Obtención del peso unitario suelto:

- Descargar en el recipiente mediante caída libre el agregado desde una altura no mayor a 50mm o 2" hasta que el rebose y con una regla eliminar el material sobrante (registrar datos).

Figura 6
Descarga del agregado en estado suelto.

Obtención del peso unitario compactado:

- Descargar sobre el recipiente en 3 capas de 1/3 de la altura total del recipiente cada una, las cuales deben ser apisonadas con 25 golpes cada una, usando la varilla, la última capa se debe enrasar para proceder a registrar datos.

Porcentaje de vacíos:

Previamente se necesita el peso aparente de los áridos y el peso unitario suelto y compactado como se describe en la Ecuación 2

Peso unitario suelto y compactado.

Cálculos:

Ecuación 2

Peso unitario suelto y compactado.

$$Pu = \frac{A - B}{C}$$

Donde:

Pu = Peso unitario de la muestra suelta o compactada (gr/cm³).

A = Peso de la muestra suelta o compactada + recipiente (gr).

B = Peso del recipiente vacío (gr).

C = Volumen del recipiente (cm³).

Ecuación 3

Porcentaje de vacíos en estado suelto y compactado.

$$\%V = \frac{AxW - B}{AxW}x100\%$$

Donde:

%V = Porcentaje de vacíos (%).

A = Peso específico aparente (MTC E 205 o MTC E 206) (gr/cm^3).

B = Peso unitario de la muestra en estado suelo o compactado (gr/cm^3) .

W = Densidad del agua (998 kg/m³ o equivalente).

Tabla 5 *Resultados de ensayo MTC E 203.*

Material	Peso unitario estado suelto	Peso unitario estado compactado	Porcentaje de vacíos estado suelto	Porcentaje de vacíos estado compactado
Piedra chancada	1.37 g/cm3	1.53 g/cm3	47.69%	41.55%
Arena gruesa zarandeada	1.62 g/cm3	1.80 g/cm3	40.57%	34.02%
Agregado grueso retriturado	1.46 g/cm3	1.63 g/cm3	48.25%	42.24%

4. GRANULOMETRIA DE LOS ÁRIDOS

Es la gradación de las partículas de los material granular propuestos y especificar sus usos como agregados y determinar el cumplimiento de las especificaciones técnicas de obra y su control de producción(MTC, Manual de ensayos de materiales, 2016).

Equipos y materiales:

- Balanza.
- Bandejas.
- Estufa.
- Tamices (de acuerdo con las especificaciones del material).
- Pala/Cucharón de mano.

Muestra:

La muestra deberá reducirse mediante cuarteo y estar previamente secada en la horno a 110° C \pm 5°C, hasta obtener una masa constante.

Para agregado fino deberá usarse como mínimo 300gr.

Para agregado grueso deberá usarse el peso mínimo según se especifica en la figura siguiente.

Tabla 6Cantidad mínima para granulometría del agregado grueso.

T.N	M.N	Cantidad mínima
mm	(pulg.)	Kg
9.5	(3/8)	1
12.5	(1/2)	2
19.0	(3/4)	5
25.0	(1)	10
37.5	$(1 \frac{1}{2})$	15
50.0	(2)	20
63.0	$(2\frac{1}{2})$	35
75.0	(3)	60
90.0	$(3^{1/2})$	100
100.0	(4)	150
125.0	(5)	300

Nota: Tomado del Manual-de ensayo de-materiales (p,305), por (MTC, 2016).

Figura 7 *Cuarteo para granulometria.*

Figura 8 *Peso de agregados para granulometría.*

Procedimiento:

 Una vez obtenida la muestra requerida seca se procedera a selecciones el juego de tamices a utilizar según se requiera y ordendar de forma decreciente, por tamaño de abertura, verter el material y agitar.

Figura 9
Juego de tamices para granulometría.

- Se recomienda que el material no exceda la pacacidad de la zaranda, de manera que las partículas logrén alcanzar las abertuas del tamiz, previmiendo la sobrecarga de material en el proceso de agitación.
- De ser necesario se podra ir colocando el material en partes para evitar lo anterior mencionado.
- Una vez terminado proceso de agitación, se procede a anotar los pesos de las particulas retenidas en los tamicez.

Requerimiento de la granulometría para mezclas de concreto:

Tabla 7 *Requerimiento de granulometría del agregado fino.*

Tamiz	Porcentaje que pasa						
9.5 mm (3/8 pulg)	100						
4.75 mm (N°4)	95 a 100						
2.36 mm (N°8)	80 a 100						
1.18 mm (N°16)	50 a 85						
600 μm (N°30)	25 a 60						
300 μm (N°50)	5 a 30						
150 μm (N°100)	0 a 10						
75 μm (N°200)	0 a 3.0 ^{AB}						

Nota: Tomado de NTP 400.037, por (Instituto Nacional de Calidad, 2021)

Tabla 8 *Requerimiento de granulometría del agregado grueso.*

Huso	%Pasante acumulados empleando tamices normalizados														
	Tamaño máximo nominal	100 mm (4 pulg)	90 mm (3 ½ pulg)	75 mm (3 pulg)	63 mm (2 ½ pulg)	50 mm (2 pulg)	37.5 mm (1 ½ pulg)	25.0 mm (1 pulg)	19.0 mm (3/4 pulg)	12.5 mm (1/2 pulg)	9.5 mm (3/8 pulg)	4.75 mm (N°4)	2.36 mm (N°8)	1.18 mm (N°16)	300 μm (N°50)
1	90 mm a 37.5 mm (3 ½ pulg a 1 ½ pulg)	100	90 a 100		25 a 60		0 a 15		0 a 5						
2	63 mm a 37.5 mm (2 ½ pulg a 1 ½ pulg)			100	90 a 100	35 a 70	0 a 15		0 a 5						
3	50 mm a 25.0 mm (2 pulg a 1 pulg)				100	90 a 100	35 a 70	0 a 15		0 a 5					
357	50 mm a 4.75 mm (2 pulg a N°4)				100	95 a 100		35 a 70		10 a 30		0 a 5			
4	37.5 mm a 19.0 mm (1 ½ pulg a ¾ pulg)					100	90 a 100	20 a 55	0 a 5		0 a 5				
467	37.5 mm a 4.75 mm (1 ½ pulg a N°4)					100	95 a 100		35 a 70		10 a 30	0 a 5			
5	25.0 mm a 12.5 mm (1 pulg a ½ pulg)						100	90 a 100	20 a 55	0 a 10	0 a 5				
56	25.0 mm a 9.5 mm (1 pulg a 3/8 pulg)						100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5			
57	25.0 mm a 4.75 mm (1 pulg a N°4)						100	95 a 100		25 a 60		0 a 10	0 a 5		
6	19.0 mm a 9.5 mm (3/4 pulg a 3/8 pulg)							100	90 a 100	20 a 55	0 a 15	0 a 5			

BACH. RODRIGUEZ VASQUES ELIAN RUBEN

BACH. VINCHALES SALAZAR JOSIAH GEORGE

			%Pasante acumulados empleando tamices normalizados												
Huso	Tamaño máximo nominal	100 mm (4 pulg)	90 mm (3 ½ pulg)	75 mm (3 pulg)	63 mm (2 ½ pulg)	50 mm (2 pulg)	37.5 mm (1 ½ pulg)	25.0 mm (1 pulg)	19.0 mm (3/4 pulg)	12.5 mm (1/2 pulg)	9.5 mm (3/8 pulg)	4.75 mm (N°4)	2.36 mm (N°8)	1.18 mm (N°16)	300 μm (N°50)
67	19.0 mm a 4 mm (3/4 pulg a N°4)							100	90 a 100		20 a 55	0 a 10	0 a 5		
7	12.5 mm a 4.75 mm (1/2 pulg a N°4)								100	90 a 100	40 a 70	0 a 15	0 a 5		
8	9.5 mm a 2.36 mm (3/8 pulg a N°8)									100	85 a 100	10 a 30	0 a 10	0 a 5	
89	12.5 mm a 9.5 mm (1/2 pulg a 3/8 pulg)									100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
9 ^A	4.75 mm a 1.18 mm (N°4 a N°16)										100	85 a 100	10 a 40	0 a 10	0 a 5


Nota: Tomado de NTP 400.037, por (Instituto Nacional de Calidad, 2021)

Tabla 9 *Granulometría piedra chancada.*

		% PASANTE	ASTM C33	3 (HUSO 7)
ABERTURA (mm)	TAMIZ	PROMEDIO	MIN	MAX
19.000	3/4"	100.00%	100%	100%
12.700	1/2"	92.05%	90%	100%
9.510	3/8"	59.28%	40%	70%
6.350	1/4"	29.83%	-	-
4.750	N° 04	2.11%	0%	15%

Figura 10 *Curva granulométrica piedra chancada.*

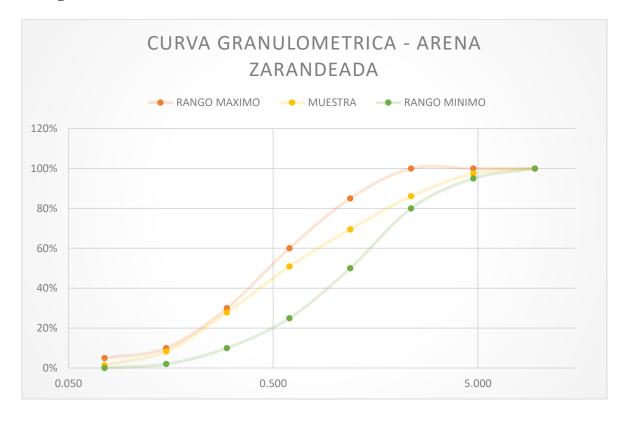


Tabla 10 *Granulometria arena zarandeada.*

		% PASANTE	ASTN	M C33
ABERTURA (mm)	TAMIZ	PROMEDIO	MIN	MAX
9.510	3/8"	100.00%	100%	100%
6.350	1/4"	100.00%	-	-
4.750	N° 04	97.44%	95%	100%
3.360	N° 06	97.44%	-	-
2.360	N° 08	86.07%	80%	100%
2.000	N° 10	82.27%	-	-
1.190	N° 16	69.51%	50%	85%
0.840	N° 20	65.66%	-	-
0.600	N° 30	50.85%	25%	60%
0.425	N° 40	41.99%	-	-
0.297	N° 50	27.82%	10%	30%
0.250	N° 60	24.78%	-	-
0.177	N° 80	18.00%	-	-
0.150	N° 100	8.29%	2%	10%
0.075	N° 200	1.38%	0%	5%

Figura 11 Curva granulométrica arena zarandeada.

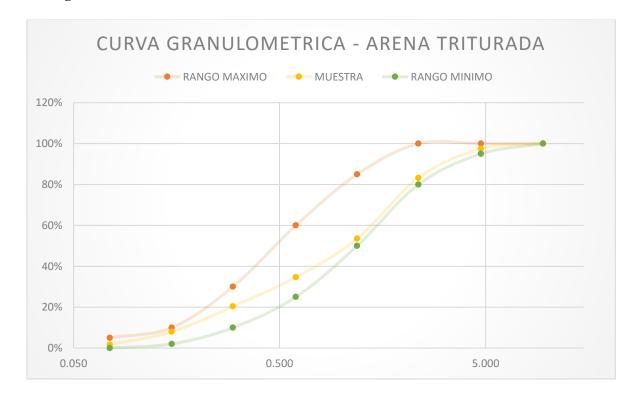


Tabla 11 *Granulometria RAGR.*

A DEDTUDA ()	TANKIZ	% PASANTE	ASTN	И С33
ABERTURA (mm)	TAMIZ	PROMEDIO	MIN	MAX
9.510	3/8"	100.00%	100%	100%
6.350	1/4"	100.00%	-	-
4.750	N° 04	97.50%	95%	100%
3.360	N° 06	97.50%	-	-
2.360	N° 08	83.20%	80%	100%
2.000	N° 10	70.28%	-	-
1.190	N° 16	53.48%	50%	85%
0.840	N° 20	41.90%	-	-
0.600	N° 30	34.66%	25%	60%
0.425	N° 40	26.11%	-	-
0.297	N° 50	20.37%	10%	30%
0.250	N° 60	17.69%	-	-
0.177	N° 80	14.02%	-	-
0.150	N° 100	7.98%	2%	10%
0.075	N° 200	1.68%	0%	5%

Figura 12 *Curva granulométrica RAGR.*

5. GRAVEDAD ESPECÍFICA Y ABSORCIÓN DE LOS ÁRIDOS FINOS

El objetivo de este proceso es determinar la gravedad específica aparente y el porcentaje de absorción de los áridos finos (MTC, 2016).

Equipos y materiales:

- Balanza
- Estufa
- Recipientes, bandejas.
- Frasco volumétrico de 500cm3 de capacidad (calibrado)
- Molde cónico metálico cuya altura es de 75 \pm 3mm y sus diámetros interiores superior e inferior sean de 90 \pm 3mm y 40 \pm 3mm de longitud respectivamente.
- Varilla para apisonado metálica (calibrada)
- Secadora

Preparación de la muestra:

- Para obtener una muestra, reducimos el material cuarteando hasta que pese alrededor de 1 kilogramo y esté seco.
- Después, introduzca la muestra en un recipiente con agua hasta que quede totalmente sumergida, y déjela allí durante un día entero.
- Posteriormente se vaciará el agua del recipiente teniendo en cuenta que no se pierdan partículas del material en el proceso.
- Consecuentemente se extenderá el material sobre una bandeja para proceder con el secado con aire tibio y removiendo hasta obtener una muestra húmeda superficialmente seca.
- Se considerará que la muestra es húmeda superficialmente seca aquella que al retirar el molde cónico cuya muestra interior apisonada en su superficie suavemente 25 veces con la varilla se derrumbe

Figura 13 *Muestra húmeda superficialmente seca.*

Procedimiento para el peso específico aparente.

- Se añade una muestra de 500 g de la sustancia producida a un matraz aforado, que se llena parcialmente con agua hasta alcanzar la marca de 500 cm3.

Figura 14
Adición de agua en el frasco volumétrico con muestra.

- Enrolle, invierta y agite la botella a mano durante 15 a 20 minutos, o hasta que se hayan eliminado todas las burbujas de aire.

Figura 15 *Agitación del frasco para eliminación de vacíos.*

 Una vez eliminadas las burbujas del frasco se procede a completar con agua hasta su capacidad calibrada y registrar sus pesos.

Figura 16 *Muestras elaboradas para gravedad especifica.*

Procedimiento del porcentaje de absorción:

- Una parte de la muestra preparada debe pesarse y registrarse. A continuación, debe secarse en una estufa a $110\pm5^{\circ}$ C hasta que alcance una masa consistente. Una vez enfriada, anotar su nuevo peso.

Figura 17Secado de muestras para porcentaje de absorción.

Cálculos:

Ecuación 4

Peso específico de la muestra fina.

$$Pe_m = \frac{P}{500 - (W - F)}$$

Donde:

Pe_m = Peso específico del árido

P = Peso de la muestra

F = Peso del frasco

W = Peso de la Muestra + Frasco + Agua

Ecuación 5

Peso específico de la muestra fina saturada con superficie seca.

$$Pe_{sss} = \frac{500}{500 - (W - F)}$$

Donde:

Pe_{sss} = Peso específico de la muestra saturada con superficie seca

F = Peso del frasco

W = Peso de la Muestra + Frasco + Agua

Ecuación 6

Peso específico aparente de la muestra fina.

$$Pe_a = \frac{P}{(500 - (W - F)) - (500 - P)}$$

Donde:

Pe_a = Peso específico aparente del árido

P = Peso de la muestra

F = Peso del frasco

W = Peso de la Muestra + Frasco + Agua

Ecuación 7

Porcentaje de absorción del agregado fino.

$$Ab = \frac{P_{SSS} - P}{P} x 100\%$$

Donde:

Ab = Porcentaje de absorción

 P_{sss} = Peso de la muestra saturada superficialmente seca

P = Peso de la muestra secada en horno

Tabla 12 *Resultados de ensayo MTC E 205.*

Material	Peso específico aparente	%Absorción
Arena gruesa zarandeada	2.730 g/cm3	0.48
Agregado grueso retriturado	2.824 g/cm3	0.73

6. PESO ESPECÍFICO Y ABSORCIÓN DE ÁRIDOS GRUESOS

El objetivo de este proceso es determinar la gravedad específica aparente y el porcentaje de absorción de los áridos gruesos (MTC, 2016).

Equipos y materiales:

- Balanza
- Cesta con malla de alambre
- Depósito de agua
- Tamiz malla N°4
- Bandejas
- Estufa

Elaboración de la muestra:

 Se obtiene reduciendo el material mediante cuarteo hasta obtener el peso mínimo requerido según el T.M.N del árido, debe estar lavada, secada y tamizada por la malla N°4, para descartar material fino.

Tabla 13 *Tamaño de muestra para ensayo de peso específico del agregado grueso.*

T.M.N	Peso Mínimo
mm (pulg)	Kg (lb)
12.5 (1/2) o menos	2 (4.4)
19.0 (3/4)	3 (6.6)
25.0(1)	4 (8.8)
37.5 (1 ½)	5 (11)
50.0 (2)	8 (18)
63.0 (2 ½)	12 (26)
75.0 (3)	18 (40)
90.0 (3 ½)	25 (55)
100.0 (4)	40 (88)
112.0 (4 ½)	50 (110)
125.0 (5)	75 (165)
150.0 (6)	125 (276)

Nota: Tomado del Manual de ensayo de materiales (p,314), por (MTC, 2016).

- La muestra se coloca en un recipiente, se llena de agua hasta el borde y se deja reposar durante un día entero.
- Posteriormente se vaciará el agua del recipiente teniendo en cuenta que no se pierdan partículas del material en el proceso.
- Para crear una muestra húmeda que esté seca superficialmente, se extiende el material en una bandeja y se seca con una toalla absorbente.

Figura 18Preparación del agregado grueso para obtención del peso específico.

Procedimiento:

- Cuando la muestra esté lista, colóquela en la cesta, mida su masa en agua, agite el recipiente para liberar el aire atrapado y, a continuación, séquela en el horno.

Figura 19 *Pesado del agregado grueso sumergido.*

Figura 20 Secado de la muestra en horno.

Cálculos

Ecuación 8

Peso específico del agregado grueso

$$Pe_m = \frac{P}{Ps - Pc}$$

Donde:

Pe_m = Peso específico del árido

Ps = Peso-de la-muestra saturada superficialmente seca

Pc = Peso de la muestra sumergida + cesta

P = Peso de muestra secada en el horno

Ecuación 9

Peso específico del agregado grueso saturado con superficie seca

$$Pe_{SSS} = \frac{Ps}{Ps - Pc}$$

Donde:

Pesss = Peso específico del materia saturado con superficie seca

Ps = Peso del material saturada superficialmente seca

Pc = Peso de la muestra sumergida + cesta

Ecuación 10

Peso específico aparente del agregado grueso

$$Pe_a = \frac{P}{P - Pc}$$

Donde:

Pea = Peso específico aparente de la muestra

Pc = Peso del material sumergido + cesta

P = Peso del material secado en el horno

Ecuación 11

Porcentaje de absorción del agregado grueso

$$Ab = \frac{Ps - P}{P} x 100\%$$

Donde:

Ab = Porcentaje de absorción

Ps = Peso de la muestra saturada superficialmente seca

P = Peso de la muestra secada en horno

Tabla 14 *Resultados de ensayo MTC E 206.*

Material	Peso específico aparente	%Absorción
Piedra chancada	2.622 g/cm3	0.53%

7. ABRASIÓN LOS ÁNGELES (L.A.)

Este método permite la obtención del porcentaje de degradación de los agregados, resultantes de las acciones de impacto y trituración. (MTC, 2016).

Equipos:

- Máquina de abrasión los ángeles
- Tamices
- Balanza
- Carga (esferas de acero de 46.8mm de diámetro y masa ente 390-445gr)

Tabla 15 *Número de cargas según gradación.*

Gradación	Número de Esferas	Masa de la carga (g)
A	12	5000±25
В	11	4584 ± 25
C	8	3330±20
D	6	2500±15

Nota: Tomado de (MTC, 2016, pág. 317).

Preparación de la muestra:

- Obtener una muestra reduciendo el material mediante cuarteo hasta obtener el peso mínimo requerido según la medida del tamiz requerido y combinar.

Tabla 16Gradación de la muestra para ensayo de abrasión los ángeles.

Medida del tamiz (abertura cuadrada)		Masa de tamaña indicado, (gr)			
Que pasa	Retenido sobre	Gradación			
Que pasa	Retenido sobre	A	В	C	D
37.5 mm (1 ½ ")	25.0 mm (1")	1250±25			
25.0 mm (1 ")	19.0 mm (3/4")	1250 ± 25			
19.0 mm (3/4")	12.5 mm (1/2")	1250 ± 10	2500 ± 10		
12.5 mm (1/2")	9.5 mm (3/8")	1250 ± 10	2500 ± 10		
9.5 mm (3/8")	6.3 mm (1/4")			2500±10	
6.3 mm (1/4")	4.75 mm (N°4)			2500±10	
4.75 mm (N°4)	2.36 mm (N°8)				5000
TOT	TAL	5000±10	5000±10	5000±10	5000±10

Nota: Tomado de (MTC, 2016, pág. 317).

Procedimiento:

- Llene el equipo de abrasión de Los Ángeles con el material de prueba y la carga.
 Gírelo durante 500 revoluciones a una velocidad de 30 a 33 rpm. Después, vierta el material en una bandeja.
- Descargado el material de procederá a separar el material obtenido con la zaranda N°12.
- Para garantizar una muestra libre de partículas finas de la prueba, el material más grueso que el tamiz N°12 se limpiará y secará en un horno hasta alcanzar un peso constante.

Figura 21 Colocación de la muestra en el equipo de abrasión los ángeles.

Figura 22Colocación de la carga en el equipo de abrasión los ángeles.

Figura 23 Separación de la muestra mediante tamiz $N^{\circ}12$.

Figura 24 *Lavado del material retenido en el tamiz N°12.*

Cálculos:

Ecuación 12

Porcentaje de desgaste a la abrasión.

$$\%Desgaste = \frac{P - P_{12}}{P}x100\%$$

Donde:

%Desgaste= Porcentaje de desgaste a la abrasión

P = Peso de la muestra preparada

 P_{12} = Peso retenido en el tamiz N°12

Tabla 17 *Resultados de ensayo MTC E 207.*

Material	Gradación	N° Esferas	%Desgaste
Piedra chancada	В	11	10.43%

8. ÍNDICE DE FORMA Y DE TEXTURA DE ÁRIDOS

El proceso consiste en evaluar la textura y la forma de la superficie de los áridos. Estos índices ayudan a decidir si los áridos son adecuados para su uso en mezclas, ya que tienen un impacto en la trabajabilidad de las mezclas y su adherencia al cemento (ASTM INTERNATIONAL, 2011).

Equipos y materiales:

- Molde cilíndricos metálico con espesor de pared mínimo 6.1mm, para agregados gruesos el diámetro interior de 152.40 ± 0.13mm y altura interior de 177.80 ± 0.13mm en caso de agregados fino el molde puede ser más pequeño manteniendo la relación diámetro altura.
- Varilla Apisonadora recta de acero, con sección circular de 15.88 ± 0.25mm, con longitud aproximadamente 610mm, con uno de sus extremos semiesférico.
- Balanza
- Recipientes
- Chucharon
- Tamices
- Horno

Elaboración de la muestra:

 Se toma una cantidad que represente significativamente a los agregados, se lava y seca para eliminar impurezas (material pasante malla N°200).

Procedimiento:

- Obtener los valores de volumen y peso de los moldes cilíndricos para su calibración.
- Tamizar el material y registrar pesos en función de las siguientes mallas, teniendo en cuenta que no se ensayará aquel peso retenido meno al 10%.

Tabla 18 *Tamiz a emplear para ensayo de índice de forma y textura de los agregados.*

Pasa T	Pasa Tamiz		Retenida en Tamiz		
19.0 mm	(3/4")	12.5 mm	(1/2")		
12.5 mm	(1/2")	9.50 mm	(3/8")		
9.50 mm	(3/8")	4.75 mm	(N°4)		
4.75 mm	(N°4)	2.36 mm	(N°8)		
2.36 mm	(N°8)	1.18 mm	(N°16)		
1.18 mm	(N°16)	600 μm	(N°30)		
600 μm	(N°30)	300 μm	(N°50)		
300 μm	(N°50)	150 μm	(N°100)		
150 μm	(N°100)	75 μm	(N°200)		

Nota: Tomado de (MTC, 2016, pág. 326).

- Para cada fracción del material tamizado que pueda utilizarse, hallar la «S», la gravedad específica y la absorción de árido.
- Calcular el porcentaje de huecos de cada fracción aplicando 50 golpes de varilla por capa y 10 golpes por capa utilizando la misma muestra en tres capas en moldes cilíndricos. A continuación, anotar los pesos.

Cálculos:

Ecuación 13

Porcentaje de vacíos del agregado compactado con 10 y 50 golpes.

$$V_{10;50} = \left[1 - \frac{W_{10;50}}{S.V}\right] x 100\%$$

Donde:

V_{10;50} = Porcentaje de vacíos del árido compactado a 10 y 50 golpes cada capa (%).

 $W_{10;50}$ = Peso promedio del árido en el molde compactado con 10 y 50 golpes correspondientemente (gr).

S = Peso específico aparente seco por fracción del agregado tamizado (gr/cm3).

V = Volumen del molde (cm3)

Ecuación 14

Índice de partículas.

$$I_a = 1.25V_{10} - 0.25V_{50} - 32$$

Donde:

I_a = Índice de partículas

V_{10,50} = Porcentaje de vacíos del agregado compactado con 10 y 50 golpes cada capa (%).

Tabla 19 *Resultados de ensayo MTC E 208.*

Material	Ia
Piedra chancada	36.308
Arena Zarandeada	11.971

9. DURABILIDAD AL SULFATO DE SODIO Y SULFATO DE MAGNESIO

se lleva a cabo para evaluar la resistencia de los agregados al asalto de sales solubles, en particular sulfato de magnesio (MgSO₄) y sulfato de sodio (Na₂SO₄) (MTC, 2016).

Equipos y materiales:

- Tamices
- Envases (recipientes de vidrio o plástico para sumergir los agregados en la solución)
- Balanza
- Termómetro
- Pinzas y guantes
- Horno
- Reactivos (Na₂SO₄ o MgSO₄)

Elaboración de la muestra:

Tabla 20Agregado fino para ensayo de durabilidad al Na₂SO₄ o MgSO₄.

Pasa el tamiz normalizado	Retenido sobre el Tamiz normalizado
600 μm (N°30)	300 μm (N°50)
1.18 mm (N°16)	600 μm (N°30)
2.36 mm (N°8)	1.18 mm (N°16)
4.75 mm (N°4)	2.36 mm (N°8)
9.50 mm (3/8")	4.75 mm (N°4)

Nota: Tomado de (MTC, 2016, pág. 332).

Tabla 21Agregado grueso para ensayo durabilidad al Na₂SO₄ o MgSO₄.

Tamaño (tamices normalizados de abertura cuadrada)	Peso en g	
Consistiendo de:		
9.5 mm (3/8") a 4.75 mm (N°4)	300±5	
19.0 mm (3/4") a 9.5 mm (3/8")	1000 ± 10	
Consistiendo de:		
Material de 12.5 mm (1/2") a 9.5 mm (3/8")	300±5	
Material de 19.0 mm (3/4") a 12.5 mm (1/2")	670±10	
37.5 mm (1 ½") a 19.0 mm (3/4")	1500±50	
Consistiendo de:		
Material de 25.0 mm (1") a 19.0 mm (3/4")	500±30	
Material de 37.5 mm (1 ½") a 25.0 mm (1")	1000±50	
63.0 mm (2 ½") a 37.5 mm (1 ½")	5000±300	
Consistiendo de:		
Material de 50.0 mm (2") a 37.5 mm (1 ½")	2000±200	
Material de 63.0 mm (2 ½") a 50.0 mm (2")	3000±300	
Para Tamaños mayores se aumentará el tamaño del tamiz en Incrementos de 25.0 mm (1") para cada fracción.	7000±1000	

Nota: Tomado de (MTC, 2016, pág. 332).

Para eliminar los contaminantes, los áridos deben secarse y limpiarse primero utilizando un tamiz N°50 para los áridos finos y un tamiz N°4 para los áridos gruesos.

Procedimiento:

- Las muestras deben permanecer sumergidas en la solución durante un mínimo de 16 horas y un máximo de 18; en caso contrario, debe repetirse la prueba. Se taparán los recipientes para evitar la evaporación y la entrada de materiales extraños, y se mantendrán a 21 ± 1°C.
- Una vez finalizada la inmersión, se escurrirán las muestras durante 15 minutos \pm 5 minutos antes de secarlas en un horno hasta que alcancen un peso constante.
- En función del número de ciclos necesarios, se volverá a realizar el ensayo con el mismo material una vez que se haya secado.

Reporte de datos:

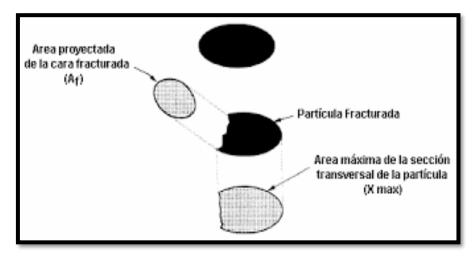
- Peso de cada muestras al inicio y final del ensayo
- Pérdida de peso en gr y porcentajes.
- Gradación y pérdida de peso corregida (%) para obtener el desgaste total (%).

Tabla 22 *Resultados de ensayo MTC E 209.*

Material	%Desgaste
Piedra chancada	0.93%
Arena Zarandeada	1.58%
Agregado grueso retriturado	1.92%

10. PORCENTAJE DE CARAS FACTURADAS

Señala el porcentaje en masa o cantidad de una muestra de árido grueso, que incluye partículas fracturadas. (ASTM INTERNATIONAL, 2013)


Equipos:

- Balanza
- Tamices
- Separador o cuarteador
- Espátula o cucharon de mano

Requisitos de las caras fracturadas:

- Se considerá una particula con caras fractura aque que cumpla lo siguente: Si $A_F \ge 0.25~X_{max}$

Figura 25
Requisitos de las caras fracturada.

Nota: Tomado del Manual de ensayo de materiales (p,339), por (MTC, 2016).

Preparación de la muestra:

- La muestra del ensayo deberá estar lavada, secada y tamizada con la malla N°4, con la finalidad de tener una muestra libre de material fino.
- El peso mínimo requerido será según lo especificado en la siguiente figura.

Tabla 23 *Muestra mínima para ensayo de cara fracturadas.*

Tamaño máximo nominal Muestra de ensayo mínima mm (pulg)	Abertura cuadrada, mm (pulg) Masa, g (aprox. lb.)
9,5 (3/8)	200 (0,5)
12,5 (1/2)	500 (1)
19.0 (3/4)	1500 (3)
25.0 (1)	3000 (6,5)
37.5 (1 ½)	7500 (16,5)
50.0 (2)	15000 (33)
63.0 (2 ½)	30000 (66)
75.0 (3)	60000 (132)
90.0 (3 ½)	90000 (198)

Nota: Tomado de (MTC, 2016, pág. 339).

Figura 26 *Preparación de la muestra para ensayo de cara fracturadas.*

Procedimiento:

- Separar la muestra en dos categorias, particulas con una caras fracturas (una o dos caras) y particulas sin caras fracturadas.

Figura 27 Análisis visual de caras fracturadas.

Figura 28 Separación del material según sus presencia de caras fracturadas.

Calculos:

Ecuación 15

Porcentaje de una o dos caras fracturada por tamiz.

$$P_F = \frac{P}{M} x 100\%$$

Donde:

P_F = Porcentaje de una o dos caras fracturadas por tamiz

P = Peso de la muestra de una o dos caras fracturadas por tamiz

M = Peso total de la muestra del tamiz

Ecuación 16

Porcentaje corregido de una o dos caras fracturada.

$$P_{CF} = \frac{(P_{Fi}xGi) + (P_{Fj}xGj) + \cdots}{Gi + Gj + \cdots}$$

Donde:

P_{CF} = Porcentaje corregido de una o dos caras fracturadas

 $P_{Fi;Fj}$ = Porcentaje de una o dos caras fracturadas por tamiz

G_{Gi;j} = Porcentaje retenido del ensayo de granulometría del tamiz correspondiente

Tabla 24: *Resultados de ensayo MTC E 210.*

Material	%Una cara fracturada	%Una dos caras fracturada
Piedra chancada	95.5%	70.8%%

11. PARTÍCULAS LIVIANAS EN LOS AGREGADOS

Se utiliza para determinar la cantidad de partículas ligeras o menos densas presentes en una muestra de árido. Las partículas ligeras (como la materia orgánica o algunos tipos de arcilla) pueden afectar negativamente a la resistencia, durabilidad y trabajabilidad del hormigón, por lo que este tipo de ensayo es crucial (ASTM INTERNATIONAL, 2011)

Equipos y Materiales:

- Balanza
- Recipientes o bandejas
- Colador
- Plato calentador u horno
- Tamices
- Solución (cloruro de zinc o bromuro de zinc en agua)

Preparación de la muestra:

 Para eliminar los contaminantes, los áridos deben secarse y limpiarse primero utilizando un tamiz N°50 para los áridos finos y un tamiz N°4 para los áridos gruesos.

Tabla 25 *Muestra mínima para ensayo de partículas livianas en los agregados.*

Tamaño máximo nominal del agregado (Tamices de abertura cuadrada)		Masa mínima de muestra (g)
4.75 mm	(N°4)	200
9.5 mm	(3/4 pulg)	3000
19.0 mm	(1 ½ pulg)	5000
37.5 mm	(3 pulg) o mayor	10000

Nota: Tomado de (MTC, 2016, pág. 345).

Procedimiento:

- Sumergir el material preparado en la solución y con un colador ir retirando y aislando dichas partículas que flotan, agitar y repetir hasta no encontrar partículas adicionales en la superficie, posteriormente secar el material y obtener pesos.

Cálculos:

Ecuación 17

Porcentaje de una o dos caras fracturada por tamiz.

$$L = \frac{W_1}{W_2} x 100\%$$

Donde:

L = Porcentaje en masa de partículas livianas.

 W_1 = Masa seca de partículas que flotan

 W_2 = Masa seca de la fracción de espécimen más grueso que tamiz $N^{\circ}50$ para agregado grueso o $N^{\circ}4$ para agregado fino

Tabla 26 *Resultados de ensayo MTC E 211.*

Material	%Partículas liviana
Piedra chancada	0.34%
Arena Zarandeada	0.38%
Agregado grueso retriturado	0.35%

12. ARCILLA EN TERRONES Y PARTÍCULAS DESMENUZABLES

(FRIABLES) EN AGREGADOS

La finalidad de este ensayo es obtener el valor del contenido de estos materiales ya que pueden reducir la calidad de las mezclas (MTC, 2016).

Insumos:

- Balanza
- Recipientes inoxidables
- Tamices
- Estufa / horno
- Agua destilada

Preparación de la muestra:

- Los agregados deberán ser previamente secados y lavados con la finalidad de eliminar impurezas usando la malla N°200 se descartará todo material pasante.
- El peso mínimo para agregados finos estará comprendido del peso retenido en la malla N°16 y cuyo masa no debe ser menor a 25gr, para agregados gruesos será lo considerado a continuación.

Tabla 27 *Muestra mínima para ensayo de arcilla en terrones y partículas desmenuzables.*

Tamaño de las partículas de las muestras	Peso mínimo de la muestra (g) Muestra (g)
4,75 mm a 9,5 mm (No.4 a 3/8 pulg)	1000
9,5 mm a 19,00 mm (3/8 pulg a 3/4 pulg	2000
19,0 mm 37,5 mm (¾ pulg a 1 ½ pulg)	3000
Mayor que 37,5 mm (1 ½ pulg)	5000

Nota: Tomado de (MTC, 2016, pág. 348).

Procedimiento:

- Tras pesar y extender finamente la muestra de ensayo, se cubre con agua destilada y se deja reposar durante veinticuatro horas.
- Utilizando los dedos pulgar e índice para aplastar y deslizar, se desmenuzarán manualmente las partículas.
- Dependiendo de la sustancia, se utilizarán distintos tamices para separar las partículas.

Tabla 28 *Tamices a utilizar para separación de partículas.*

Tamaño de las partículas de las muestras	Tamiz a utilizar para la separación de los terrones de arcilla y partículas desmenuzables
Agregado fino retenido sobre el tamiz de	850 μm (N°20)
1,18 mm (No 16)	630 μm (1√20)
4,75 mm a 9,5 mm (No.4 a 3/8 pulg)	2.36 mm (N°8)
9,5 mm a 19,00 mm (¾ pulg a ¾ pulg	4.75 mm (N°4)
19,0 mm 37,5 mm (¾ pulg a 1 ½ pulg)	4.75 mm (N°4)
Mayor que 37,5 mm (1 ½ pulg)	4.75 mm (N°4)

Nota: Tomado de (MTC, 2016, pág. 348).

 Aplique agua a la muestra mientras mueve el tamiz con la mano para realizar el tamizado. A continuación, retire las partículas que queden en la malla, seque y registre la masa.

Cálculos:

Ecuación 18

Porcentaje de partículas desmenuzables y terrones de arcilla.

$$P = \frac{M - R}{M} x 100\%$$

Donde:

P = Partículas desmenuzables y terrones de arcilla (%)

M = Masa seca del material de ensayo

R = Masa retenida en el tamiz designado

Tabla 29 *Resultados de ensayo MTC E 212.*

Material	%Terrones y partículas friables
Piedra chancada	0.05%
Arena Zarandeada	0.69%
Agregado grueso retriturado	0.53%

13. ÍNDICE DE DURABILIDAD DE LOS ÁRIDOS

El propósito de esta prueba es evaluar el índice de durabilidad de los agregados para determinar si son lo suficientemente resistentes para ser utilizados en la fabricación de concreto o en otros productos de construcción. (ASTM INTERNATIONAL, 2018)

Materiales y equipo:

- Vaso mecánico de lavado cilíndrico con paredes rectas y fondo plano
- Recipiente colector o fondo de mallas circular
- Agitador mecánico
- Tamices
- Balanza
- Horno
- Solución de cloruro de calcio-Stock
- Cilindro graduado, transparente de plástico acrílico con tapón de jebe

- Tubo irrigador
- Dispositivo de pesado de pie
- Ensamblaje sifón
- Lata de medición, capacidad de 85 ± 5 ml y 57mm de diámetro
- Embudo
- Bandejas
- Botellas de 1gal
- Platillo plano
- Espátula o cucharón de mano
- Reloj
- Papel filtro
- Agua destilada o agua desmineralizada

Preparación de la muestra del agregado grueso:

- Preparar una muestra tal como se muestra a continuación,

Tabla 30 *Muestra de agregado grueso para ensayo de estándar para índice de durabilidad.*

Tamaño del agregado	Peso seco al aire, g
19,0 a 12,5 mm (³ / ₄ " a ¹ / ₂ ")	1070 ± 10
12,5 a 9,5 mm (½" a ¾")	570 ± 10
9,5 a 4,75 mm (3/8" a N°4)	910 ± 5
TOTAL	2550 ± 25

Nota: Tomado de (MTC, 2016, pág. 355).

- En el caso de tener menos del 10% del material en una malla, trabajar con porcentajes del retenido correspondiente.
- Para colocar el material preliminar en el recipiente mecánico, añadir 1000 ± 5 ml de agua desmineralizada o destilada, y agitar en la tamizadora durante 120 ± 5 segundos.

- A continuación, hasta conseguir un peso constante, secar el material que haya pasado por el tamiz N°4 y haya quedado retenido en el tamiz N°200.

Preparación de la muestra del agregado fino:

- Por cuarteo reducir la muestra hasta 500 ± 25 g de material secado en horno.

Procedimiento:

Vierta 102 ± 3 mm (4 ± 0,1 pulg.) de la solución preparada en la probeta graduada y, a continuación, utilice el embudo para verter una de las muestras sin derramar material. Golpee el fondo de la probeta con la palma de la mano para eliminar las burbujas de aire y, a continuación, déjela reposar durante 10 ± 1 minuto.

- Utilice el agitador mecánico para agitar una vez finalizado el período de reposo.

 Cuando la solución alcance el punto de gradación de 15» (38 cm), irrigue el cilindro mientras está en posición vertical, girando y enjuagando las paredes del cilindro y pinchando el material del interior del tubo.

Después de que el cilindro haya estado en reposo durante 20 minutos ± 15 segundos,
 anote la marca en la parte superior de la suspensión de arena (la altura máxima de arena). Si el tiempo de sedimentación es superior a 30 minutos, repita la prueba.

Posteriormente dispositivo de pesado se ubica sobre el cilindro y bajar despacio, dejar descansar sobre la arena, dar lectura y registrar el valor indicado por la parte superior del dispositivo de pesado al cual se le restara 10" (25.4cm) para determinar la lectura de altura máxima de material fino.

Cálculos:

Ecuación 19

Índice de durabilidad del agregado fino.

 $I_D = \frac{LECTURA\ DE\ ARENA}{LECTURA\ DE\ LA\ ARCILLA} x 100\%$

Donde:

 $I_D = \text{Índice de durabilidad (%)}$

Nota: Para el resultado del promedio de 3 muestras o más, se redondeará al entero siguiente.

Ecuación 20

Índice de durabilidad del agregado grueso.

$$I_D = 30.3 + 20.8 \cot (0.29 + 0.15H)$$

Donde:

 $I_D = \text{Índice de durabilidad (%)}$

H = Altura de sedimentación, en mm y la cantidad de (0.29 + 0.15H) en radianes.

Tabla 31 *Resultados de ensayo MTC E 214.*

Material	%Índice de Durabilidad
Piedra chancada	66.3%
Arena Zarandeada	65.7%
Agregado grueso retriturado	63.7%

14. CONTENIDO DE HUMEDAD TOTAL DE LOS ÁRIDOS POR SECADO

Permite la determinación del cometido de humedad de los agregados mediante el secado. (MTC, 2016)

Equipos:

- Balanza
- Horno $(110 \pm 5^{\circ}C)$
- Recipientes / bandeja
- Cuarteador
- Cucharon o espátula

Elaboración de la muestra:

- Es obtenida de la fuente de abastecimiento será transportada de forma que no pierda humedad en su trayecto, es decir usando bolsas o envases impermeables.

- La muestra deberá ser representativa obtenida mediante cuarteo, según lo mostrado a continuación.

Tabla 32 *Muestra mínima para contenido de humedad.*

T.M.N. del árido mm (pulg.)	Masa mínima en Kg
4,75 (0,187) (N°4)	0,5
9,5 (3/8)	1,5
12.5 (1/2)	2,0
19.0 (3/4)	3,0
25.0(1)	4,0
37.5 (1 ½)	6,0
50.0 (2)	8,0
63.0 (2 ½)	10,0
75.0 (3)	13,0
90.0 (3 ½)	16,0
100.0 (4)	25,0
150.0 (6)	50,0

Nota: Tomado de (MTC, 2016, pág. 363).

Figura 29 *Reducción de la muestra mediane cuarteo.*

Preparación:

- Una vez recolectada, la muestra será colocada en el horno para secar, hasta conseguir una muestra de peso estable.

Figura 30 *Colocación de la muestra en horno para secado.*

Figura 31 Retiro de la muestra seca.

Figura 32 *Registro de datos para obtención de contenido de humedad.*

Cálculos:

Ecuación 21

Contenido de humedad.

$$Ab = \frac{M - P}{P} x 100\%$$

Donde:

%W = Contenido de humedad

M = Peso del materia húmedo

P = Peso del material secada en horno

Tabla 33 *Resultados de ensayo MTC E 215.*

Material	%Contenido de humedad
Piedra chancada	0.29%
Arena Zarandeada	0.46%
Agregado grueso retriturado	0.57%

15. ANÁLISIS GRANULOMÉTRICO DEL RELLENO MINERAL

Es un procedimiento utilizado para determinar la granulometría de las partículas de un material granular (ASTM INTERNATIONAL, 2024)

Equipos y materiales:

- Balanza
- Horno $(110 \pm 5^{\circ}C)$
- Recipientes / bandeja
- Tamices
- Cucharon o espátula

Elaboración de la muestra:

- Comprendido entre 500g y 1000g dependiendo del tipo de material y las normas aplicables). La muestra deberá estar previamente secada en horno.

Procedimiento

- Lavar la muestra con agua y usando las mallas N°30, N°50 y N°200 hasta observar que el agua saliente está completamente clara.
- Secar la muestra retenida en cada zaranda y registrar.

Reporte de datos:

- Peso de la muestra inicial.
- Peso retenido seco en cada malla.
- Porcentaje de peso retenido parcial, acumulado y pasante, en función del peso de la muestra inicial.

Tabla 34 Resultados de ensayo MTC E 216 – Arena zarandeada.

ABERTURA (mm)	TAMIZ	% PASA
0.600	N°30	93.40%
0.297	N°50	81.80%
0.075	N°200	75.80%

Tabla 35 Resultados de ensayo MTC E 216 – RAGR.

ABERTURA (mm)	TAMIZ	% PASA
0.600	N°30	89.90%
0.297	N°50	67.90%
0.075	N°200	38.10%

16. REACTIVIDAD AGREGADO / ÁLCALI (MÉTODO QUÍMICO)

También conocida como la prueba de expansión por reacción alcalina-sílice o reacción álcalisílice, RAS.

Es un método utilizado para evaluar si los agregados empleados en la fabricación de concreto pueden reaccionar de manera adversa con los álcalis (hidróxido de sodio y potasio) presentes en el cemento. Esta reacción puede causar expansión y deterioro en el concreto, comprometiendo su resistencia y durabilidad. (ASTM INTERNATIONAL, 2017)

Equipos y materiales:

- Balanza
- Equipo de molienda
- Fotómetro
- Horno $(110 \pm 5^{\circ}C)$
- Recipientes graduados
- Bandeja
- Tamices
- Solución de molibdato de Amonio
- Ácido clorhídrico estándar (0.005N)
- Acido clorhídrico (1:1)
- Ácido Fluorhídrico
- Solución indicadora de fenolftaleína.

UNS NACIONAL DAL SANTA

- Solución estándar de sílice
- Ácido Sulfúrico

Preparación de la muestra:

 Tras pasar por el tamiz N°50 y quedar retenida en el tamiz N°100, la muestra se limpia y se seca utilizando el tamiz N°100.

Procedimiento:

- Separar tres porciones de 25.0 ± 0.05g de muestra preparada seca y colocar cada una en recipiente individual y adicionar por con una pipeta 25ml de solución N de NaOH, en un cuarto recipiente 25ml de solución NaOH (para ensayo en blanco), sellar los recipientes con tapón y agitar para eliminar el aire en su interior.
- Una vez sellados, colóquelos en un baño de agua a 80°C ± 1°C. Transcurridas 24 horas ± 25 minutos, sacar los recipientes y dejarlos enfriar bajo el grifo durante 15 minutos ± 2 minutos por debajo de 30°C.
- Posteriormente el material se filtra y el material resultante de la reacción se analiza para determinar la cantidad de sílice reactiva presente.
- Para determinar el grado de reactividad se puede emplear el método gravimétrico o método fotométrico.

Cálculos:

Ecuación 22

Cálculo de sílice por método gravimétrico.

$$Se = (W_1 - W_2)x3330$$

Donde:

Se = Concentración de SiO₂ (milimoles/lt).

W₁ = Gramos SiO₂ fundido en 100 ml de solución diluida.

W₂ = Gramos SiO₂ fundido de la solución blanco.

Ecuación 23

Cálculo de sílice disuelta por método fotométrico.

$$Sc = 20x \frac{100}{V} xC$$

Donde:

Sc= Concentración de SiO₂ (mili-moles/lt).

C = Concentración de sílice medida en el fotómetro.

V = Mili-moles de la solución diluida.

Tabla 36 *Resultados de ensayo MTC E 217.*

Material	Concentración de SiO ₂	Reducción en alcalinidad
Agregado grueso retriturado	0.33 milimoles/lt	0.10 milimoles/lt

17. DETERMINACION CUANTITATIVA DE LOS COMPUESTOS DE AZUFRE

Tabla 37 *Resultados de ensayo MTC E 218.*

Material	%Contenido de sulfatos totales
Piedra chancada	0.09%
Arena Zarandeada	0.06%

18. SALES SOLUBLES EN AGREGADOS PARA PAVIMENTOS FLEXIBLES

Los compuestos químicos que se disuelven fácilmente en agua se conocen como sales solubles, y pueden encontrarse en los áridos utilizados para fabricar asfalto u hormigón asfáltico para pavimentos flexibles. Aunque estas sales pueden tener una gran variedad de composiciones, las más frecuentes son las sales de sulfato, sodio, calcio y magnesio. Las características y la funcionalidad del pavimento flexible se ven afectadas significativamente por la presencia de estas sales en los áridos. (MTC, 2016)

Insumos:

- Balanza
- Horno

- Plancha de calentamiento
- Mecheros
- Matraces aforados
- Vasos precipitados
- Pipetas
- Agua destilada
- Solución de Nitrato de Plata
- Solución de Cloruro de Bario

Elaboración de la muestra:

- Deberá ser según lo requerido a continuación.

Tabla 38 *Muestra mínima para contenido de humedad.*

Agregado pétreo	Cantidad mínima (g)	Aforo mínimo (ml)
Grava 50 – 20 mm	1000	500
Grava 20 – 5 mm	500	500
Arena 20 mm	100	500

Nota: Tomado de (MTC, 2016, pág. 380).

Procedimiento:

- Primero hay que secar la muestra.
- Para colocar el material en un vaso precipitador, cúbralo con 3 centímetros de agua destilada y, a continuación, caliéntelo hasta que hierva.
- Tras un minuto de agitación, repetir hasta alcanzar cuatro ciclos en diez minutos.
- Para utilizar los reactivos mencionados para determinar individualmente la presencia de sales en dos tubos, decantar durante al menos diez minutos hasta que se aprecie el líquido transparente.
- Se utilizará una gota de nitrato de plata para detectar el cloruro, y cloruro de bario para detectar los sulfatos, este proceso se repetirá hasta que no queden sales.

- Una vez enfriado, transfiere el sobrenadante líquido recogido a un matraz aforado y completa con agua destilada.
- Registrar el volumen de una parte del material homogeneizado en el matraz, entre
 50 y 100 mililitros.
- A continuación, secar en el horno a $100 \pm 5^{\circ}\mathrm{C}$ hasta que el peso se mantenga constante

Cálculos:

Ecuación 24

Cálculo de sales solubles

$$Ss = \frac{A}{B}x100\%$$

Donde:

Ss= Porcentaje de sales solubles (%)

A = Peso de las sales solubles.

B = Peso inicial de la muestra.

Tabla 39 *Resultados de ensayo MTC E 219.*

Material	%Sales Solubles Totales
Piedra chancada	0.46%
Arena Zarandeada	0.47%
Agregado grueso retriturado	0.44%

19. PROCEDIMIENTO RIEDELWEBER

una técnica para evaluar la adherencia de los ligantes bituminosos, como el asfalto, a las partículas finas de los pavimentos asfálticos (MTC, 2016)

Equipos y materiales:

- Balanza
- Tamices
- Horno
- Tubo de ensayo
- Bandejas, cazos de porcelana
- Cuarteador de agregado fino
- Papel filtro
- Pinzas
- Disolución de carbonato sódico
- Ligante bituminoso

Preparación de la muestra:

- El material requerido es de 200g el cual deberá estar secado.
- Las mallas N°30 y 70° se utilizarán para cribar el 200; el material que pase por el tamiz N°70 se desechará, y el material que quede en el N°30 se enjuagará para eliminar todo el polvo y se secará hasta conseguir una masa consistente.
- Posteriormente se mezclará el ligante asfaltico con el árido en relación de 71:21 en volúmenes de árido y ligante correspondientemente a una temperatura comprendida entre 120-160°C.

Procedimiento:

- La mezcla preparada se dividirá en 11 porciones de 0.5g c/u y se colocarán en distintos tubos de ensayo donde se enumerarán del 0 al 10.

- En el tubo 0 se añade 6cm3 de agua destilada, luego marcar el tubo a la altura que llega, se calienta cuidadosamente durante 1mín, continuadamente se vuelve añadir el agua destilada hasta la marca inicial y se procede a la observación visual.
- Para el análisis visual se puede hacer comparando su movimiento con el de una muestra con agua destilada sin ligante.
- Repetir cada muestra en los tubos de ensayos enumerados añadiendo las proporciones de carbonato sódico, según se indica a continuación.

Tabla 40 *Soluciones de ensayo.*

Molaridad	G de Na ₂ CO ₃ /1 disolución
M/256	0,414
M/128	0,828
M/64	1,656
M/32	3,312
M/16	6,625
M/8	13,25
M/4	26,5
M/2	53,0
M/1	106,0

Nota: Tomado de (MTC, 2016, pág. 382).

Reporte de datos:

Se señala el índice de adhesividad Riedel - Weber según el número correspondiente
 a la disolución de concentración más baja empleadas en el lugar de ocurrir el desplazamiento total.

Tabla 41 *Índice de Riedel Weber.*

Solución de Ensayo	Índice de adhesividad Riedel – Weber
Desplazamiento total con agua destilada	0
Carbonato sódico	
M/256	1
M/128	2
M/64	3
M/32	4
M/16	5
M/8	6
M/4	7
M/2	8
M/1	9
Si no hay desplazamiento total con la solución M/1	10

Nota: Tomado de (MTC, 2016, pág. 384).

 Si se produce un desplazamiento parcial del ligante con alguno, el índice de adhesividad puede expresarse como el número correspondiente a la concentración más baja a la que se produce el desplazamiento parcial o total.

Tabla 42 *Resultados de ensayo MTC E 220.*

Material	Índice de adhesividad
Material	Riedel – Weber
Arena Zarandeada	5
Agregado grueso retriturado	6



20. ANGULARIDAD DEL AGREGADO FINO

La angularidad afecta la trabajabilidad, resistencia y durabilidad del concreto o asfalto, así como su adhesión al ligante (en el caso de mezclas asfálticas). En términos generales, los agregados más angulares tienden a ser más fuertes y proporcionar mejor adherencia, pero a su vez pueden dificultar la mezcla y la compactación. Por otro lado, los agregados redondeados mejoran la trabajabilidad, pero pueden no ser tan resistentes como los angulares (MTC, 2016) Equipos y materiales:

- Tamices
- Cilindro metálico de volumen conocido
- Embudo metálico
- Marco metálico

Figura 33 *Equipo de medición de angularidad del árido*

Nota: Tomado de (MTC, 2016, pág. 384).

Elaboración de la muestra:

 Es el material resultante de tamizar empleando las mallas N°8 y 200°, descartando el pasante del tamiz N°200 y el retenido del tamiz N°8; el material obtenido se lavará para eliminar completamente el polvo y se secará, hasta obtener una masa constante.

Procedimiento:

- Se obtendrá previamente la gravedad especifica neta del árido escogido.
- Nivele y pese el agregado que queda en el cilindro después de colocar el material preparado en el embudo hasta que el recipiente rebose

Cálculos:

Ecuación 25

Angularidad del agregado

$$A^{\circ} = \frac{V - \frac{W}{G_{Sb}}}{V} x 100\%$$

Donde:

 A° = Angularidad / vacíos no compactados (%)

V = Volumen del cilindro.

Gsb = Gravedad especifica del agregado fino.

W = Peso del agregado fino.

Tabla 43 *Resultados de ensayo MTC E 222.*

Material	Angularidad (%)
Arena Zarandeada	41.6
Agregado grueso retriturado	43.6

21. PARTÍCULAS CHATAS Y ALARGADAS EN AGREGADOS

Su finalidad es hallar el valor del porcentaje de partículas chatas y alargadas para determinar si cumplen con los parámetros y especificación requeridas para su empleo. (ASTM INTERNATIONAL, 2023)

Equipos:

- Tamices
- Balanza
- Separador o cuarteador
- Espátula o cucharon de mano
- Bandejas o recipientes
- Equipo calibrador proporcional

Figura 34 *Equipo calibrador proporcional.*

Muestra:

 Sí se realiza el ensayo por pesos la muestra será previamente lavada, secada en horno y tamizada con la malla N°4, con la finalidad de eliminar los finos, mediante cuarteo reducir la muestra hasta obtener el peso mínimo requerido.

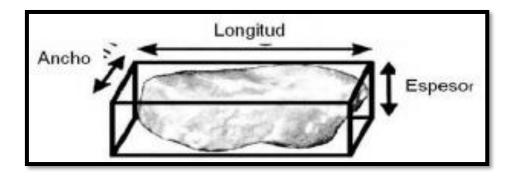


Tabla 44 *Muestra mínima para ensayo de partículas chatas y alargadas.*

T.M.N. del árido	Peso mínimo
mm (pulg)	Kg – (lb)
9,5 - (3/8)	1 – (2)
12.5 - (1/2)	2 - (4)
19.0 - (3/4)	5 - (11)
25.0 - (1)	10 - (22)
37.5 - (1 ½)	15 - (33)
50.0 - (2)	20 - (44)
$63.0 - (2\frac{1}{2})$	35 - (77)
75.0 - (3)	60 - (130)
90.0 - (3 ½)	100 - (220)
100.0 - (4)	150 - (330)
$112 - (4\frac{1}{2})$	200 - (440)
125 - (5)	300 - (660)
150.0 (6)	500 – (1100)

Nota: Tomado del Manual de ensayo de materiales (p,393), por (MTC, 2016).

Figura 35 *Medidas para ensayo de partículas chatas y alargadas.*

Nota: Tomado de (MTC, 2016, pág. 392).

Procedimiento:

- Una vez obtenido el peso mínimo requerido, se procede a separar en función del tamaño empleando los tamices correspondientes.
- Las partículas chatas serán aquellas que su espesor pasa por abertura menor del equipo.
- Se dice que las partículas que pasan por la abertura más estrecha del equipo son alargadas.

Figura 36 *Tamizado para ensayo de partículas chatas y alargadas.*

Figura 37 *Registro de datos para ensayo de partículas chatas y alargadas.*

Calculos:

Ecuación 26

Porcentaje de partículas chatas y alargadas por tamiz.

$$\%PCA = \frac{P}{M}x100\%$$

Donde:

%PCA = Porcentaje partículas chatas y alargadas por tamiz

P = Peso de partículas chatas y alargadas por tamiz

M = Peso total de la muestra del tamiz

Ecuación 27

Porcentaje corregido de partículas chatas y alargadas.

$$\%PCA_C = \frac{(PCA_ixGi) + (PCA_jxGj) + \cdots}{Gi + Gj + \cdots}$$

Donde:

%PCA_C = Porcentaje corregido partículas chatas y alargadas

PCA = Porcentaje partículas chatas y alargadas por tamiz

G_{Gi;j} = Porcentaje retenido del ensayo de granulometría del tamiz correspondiente

Tabla 45 *Resultados de ensayo MTC E 223.*

Material	% Partículas chatas y alargadas			
Piedra chancada	7.30%			

22. LIMITES DE ATTERBERG DE LOS SUELOS E INDICE PLASTICO (I.P.)

Tabla 46 *Resultados de ensayo MTC E 110 y MTC E 111.*

Material	Límite Liquido	Límite Plástico	Índice de Plasticidad
Piedra chancada	N.P	N.P	N.P
Arena zarandeada	N.P	N.P	N.P
Agregado grueso retriturado	N.P	N.P	N.P

23. EQUIVALENTE DE ARENA DE SUELOS Y AGREGADO FINO

La calidad de los áridos durante la fabricación o la colocación puede determinarse gracias a este método, que calcula empíricamente las cantidades relativas de arena y arcilla (MTC, 2016) Insumos:

- Cilindro graduado, transparente de plástico acrílico con tapón de jebe
- Tubo irrigador
- Dispositivo de pesado de pie
- Ensamblaje sifón
- Horno
- Agitador mecánico o manual (opcional)
- Lata de medición, capacidad de 85 ± 5 ml y 57mm de diámetro
- Tamiz N°4
- Embudo
- Bandejas
- Botellas de 1gal
- Platillo plano
- Espátula o cucharón de mano
- Reloj
- Papel filtro
- Solución stock: Formada por la combinación de 454 gr de cloruro cálcico anhidro en 1,9L de agua destilada, filtrada en papel filtro a la cual se le añade 200 gr de glicerina con 47 g de formaldehído, finalmente se diluyendo 85 ± 5ml de solución en 3.8L de agua destilada.

Figura 38
Preparación de solución stock para ensayo de equivalente de arena.

Elaboración de la muestra:

 Mediante cuarteto reduce el material (pasante tamiz N°4) hasta obtener 1500gr de muestra como mínimo.

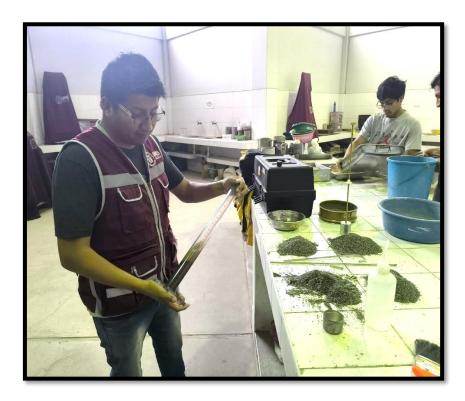
Figura 39 *Preparación de la muestra para ensayo de equivalente de arena (arena gruesa).*

- Se debe añadir agua a la muestra preservando su libre flujo.
- Realice cuatro mediciones de la muestra utilizando el recipiente de medición. Si el
 material es mayor que el recipiente, golpee la base sobre una superficie dura al
 menos cuatro veces, sacúdala un poco y anote los datos. A continuación, seque la
 muestra y déjela enfriar a temperatura ambiente.
- Manteniendo la condición de flujo libre, descargar el material previniendo la segregación o perdida formando un montículo y cuarteando.
- Añadir agua hasta formar con el material, hasta que al apretarlo con la palma de la mano no se desmorone ni desmenuce.
- Con el recipiente de medida presionar sobre el montículo y nivelar el material sobrante (muestra final), repetir el procedimiento para muestra.

Figura 40 *Muestra para ensayo de equivalente de arena.*

Procedimiento:

- Vierta 102 ± 3 mm (4 ± 0,1 pulg.) de la solución preparada en la probeta graduada y, a continuación, utilice el embudo para verter una de las muestras sin derramar material. Golpee el fondo de la probeta con la palma de la mano para eliminar las burbujas de aire y, a continuación, déjela reposar durante 10 ± 1 minuto.


Figura 41
Colocación del espécimen en el cilindro graduado con solución preparada.

- Culminado el tiempo de reposo agitar mediante cualquiera de los siguientes métodos:
- Método de agitador mecánico: duración de $45 \pm 1s$.
- Método de agitador manual: 100 golpes
- Método manual: 90 ciclos durante aprox. 30s con un recorrido de 23 ± 3cm en cada agitación

Figura 42
Agitación del cilindro graduado por método manual.

- Pinchar el material dentro del tubo, girar y enjuagar las paredes del cilindro, luego regar con la solución manteniendo el cilindro en posición vertical hasta que la solución alcance el punto de gradación de 15» (38 cm).
- Después de que el cilindro haya estado en reposo durante 20 minutos ± 15 segundos, anote la marca superior de la suspensión de arcilla (tanto la lectura como la arcilla). Si la duración de la sedimentación es superior a 30 minutos, repita la prueba.
- Una vez determinada la marca de arcilla, coloque el dispositivo de pesaje sobre el cilindro, bájelo lentamente y déjelo reposar en la arena. A continuación, lea y registre el valor que muestra la parte superior del dispositivo de pesaje, del que se deducirán 25,4 cm (10") para obtener la lectura de la arena.

Figura 43
Lectura de arcilla.

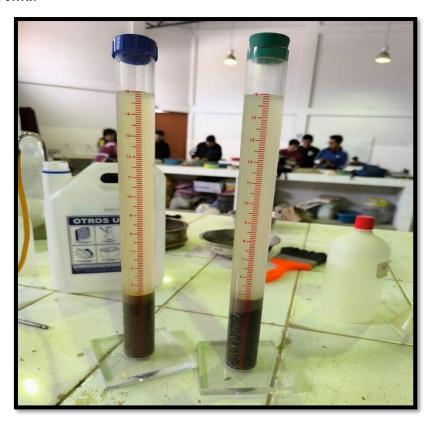
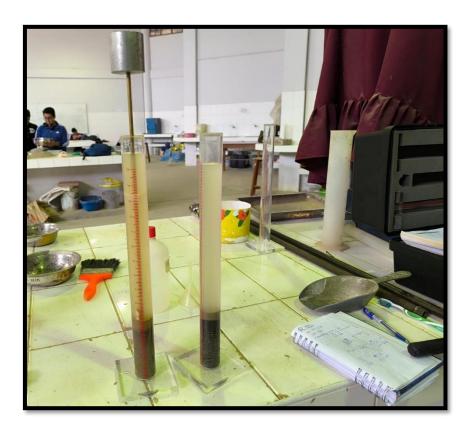



Figura 44
Lectura de Arena.

Cálculos:

Ecuación 28

Equivalente de arena.

$$SE = \frac{LECTURA\ DE\ ARENA}{LECTURA\ DE\ ARCILLA} x 100\%$$

Donde:

SE = Equivalente de arena

Nota: Para el resultado del promedio de 3 muestras o más, se redondeará al entero siguiente.

Tabla 47 *Resultados de ensayo MTC E 114.*

Material	%Equivalente de Arena
Arena zarandeada	68%
Agregado grueso retriturado	73%

24. AZUL DE METILENO (AASHTO TP 57)

Utilizado para medir la cantidad de material que interactúa con el azul de metileno con el fin de evaluar la calidad de los agregados (AASHTO, 2016).

Equipos y Materiales:

- Solución de azul de metileno (C₁₆H₁₈ClN₃S)
- Agua destilada
- Balanza
- Vaso precipitado
- Agitador o varilla de agitación
- Tubos de ensayo cilíndricos, graduados
- Tamices
- Colador
- Papel filtro

Elaboración de la muestra:

 Se toma una muestra representativa el cual debe estar seca y se tamizará empleando la malla N°200 con la cual se descartará el material retenido y se trabajará con el pasante.

Procedimiento:

- Se ponen $10 \text{ g} \pm 0.5 \text{ g}$ de la sustancia producida en un vaso volumétrico de 500 ml.
- Tras añadir 30 mililitros de agua destilada y batir hasta que se forme una papilla, añadir 0,5 mililitros de solución de azul de metileno y mezclar durante un minuto.
- Se vierte una gota de la papilla producida sobre la superficie del papel de filtro utilizando la varilla agitadora.
- A continuación, se realiza el examen visual. Si se observa un anillo o halo azul alrededor de la gota, se detecta; si no, se añaden 0,5 ml más de solución y se repite el proceso de agitación hasta que se observe el anillo azul.
- Una vez conseguido, se agitará durante cinco minutos y se repetirá la prueba del papel de filtro para su verificación.

Reporte de datos:

- En función a lo especificado a continuación.

Tabla 48Desempeño del agregado en fusión del valor de azul de metileno.

Valor de Azul de Metileno (mg/g)	Desempeño anticipado
<u>≤6</u>	Excelente
7 – 12	Marginalmente aceptable
13 – 19	Problemas / Posible falla
≥ 20	Fallado

Nota: Tomado del Normas de Ensayos e Materiales para Carreteras, por (INVIAS, 2007)

Cálculos:

Ecuación 29

Equivalente de arena.

$$VA = \frac{CxV}{W} = 0.5V$$

Donde:

VA = Valor de azul de metileno

C = Concentración de la solución de azul de metileno (5mg de azul de metileno por ml de solución).

V = Cantidad de solución de azul de metileno requerida.

W = Masa de material seco utilizado en la prueba (10g).

Tabla 49 *Resultados de ensayo AASHTO TP 57.*

Material	Valor de azul de metileno
Arena zarandeada	5.5

25. MÉTODO MARSHALL (ASTM D 1559)

El Método Marshall establece una serie de parámetros que permitirán obtener datos con los cuales garantiza y a su vez permite optimizar los valores del %CA para una combinatoria de áridos determinada. (ASTM INTERNATIONAL, 2021)

En cuanto a sus limitación es que solo es usada para CAC que estén conformadas con áridos de TM de 25mm (1") o menor, y utiliza especímenes de prueba estándar de una altura de 64mm (2 1/2") y diámetro de 102mm (4"). (ASTM INTERNATIONAL, 2021).

Requisitos previos:

- Ensayos de materiales a los áridos, para para verificar si satisfacen las características necesarias.
- Combinatoria de los agregados.

Equipos y materiales:

- Prensa para ensayo Marshall.
- Anillo de carga y medidor (estabilidad)
- Medidor de deformaciones (flujo)
- Mordaza.
- Baño de María.
- Equipo de compactación.
- Bandejas metálicas.
- Extractor de muestras.
- Cazos de aluminio.
- Estufa.
- Cogedor curvo.
- Termómetro con escala de 0 a 200°C.
- Balanza.
- Espátula.
- Guantes para material caliente.
- Aceite lubricante.
- Cuchara de Mezclado.
- Plato caliente eléctrico, con regulador de temperatura.
- Papel parafinado.
- Vernier.

Combinación de los agregados:

Se realiza aplicando el método de tanteo, en relación a la granulometría de los áridos, dicha combinatoria deberá de cumplir con los límites máximos o mínimos según su uso.

Tabla 50 *Gradación Superpave TMN = 19mm.*

Tamaño del Puntos de Control		Línea de Máxima	Restricció		Formula de	Tolerancia			
tamiz mm				Densid		Mínimo	Máximo	Mezcla	(**)
25	-	100,0	100,0	-	-	-	-		
19,00	100,0	90,0	88,4	-	-	-	-		
12,50	-	-	73,2	-	-	-	-		
9,50	-	-	59,6	-	-	-	-		
4,75	-	-	49,5	-	-	*	(6)		
2,36	49,0	23,0	34,6	34,6	34,6	*	(6)		
1,18	-	-	25,3	22,3	28,3	-	-		
0,60	-	-	18,7	16,7	20,7	*	(4)		
0,30	-	-	13,7	13,7	13,7	*	(3)		
0,15	-	-	10,0	-	-	-	-		
0,075	8,0	2,0	7,3	-	-	*	(2)		

Nota: (*) El contratista especificará los valores con aproximación al 0,1% y (**) Desviaciones aceptables (±) de los valores de la fórmula. Tomado de (MTC, 2016, pág. 267)

Tabla 51 *Gradación Superpave TMN = 25mm.*

Tamaño del	Puntos de Control		Línea de Máxima	Zona de Restricción		Formula de	Tolerancia
tamiz mm			Densidad	Mínimo	Máximo	Mezcla	(**)
37,5	-	100,0	100,0	-	-	-	-
25	100,0	90,0	83,3	-	-	-	-
19,00	-	-	73,6	-	-	-	-
12,50	-	-	61,0	-	-	-	-
9,50	-	-	53,9	-	-	*	(6)
4,75	-	-	39,5	39,5	39,5	*	(6)
2,36	45,0	19,0	28,8	26,8	30,8	-	-
1,18	-	-	21,1	18,1	24,1	*	(4)
0,60	-	-	15,6	13,6	17,6	*	(3)
0,30	-	-	11,4	11,4	11,4	-	-
0,15	7,0	1,0	8,3	-	-	*	(2)
0,075	-	-	6,1	-	-	-	-

Nota: (*) El contratista especificará los valores con aproximación al 0,1% y (**) Desviaciones aceptables (±) de los valores de la fórmula. Tomado de (MTC, 2016, pág. 268).

Procedimiento:

- Una vez realizado la combinatoria, se deberá dejar secar en el horno (estufa) por separado cada uno, a una temperatura constante de 110°C ± 5°C.
- Posteriormente se debe preparar por separado en bandejas las distintas muestras de agregados combinados (según la cantidad de muestras a preparar en función del %C.A), y calentarlas hasta llegar a una temperatura de 150°C ± 5°C.
- Seguidamente añadir el C.A. en función de los porcentajes y pesos de los agregados combinados, durante 3min de manera manual o 1min mediante un mexclador mecánico.
- En paralelo se deberan preparar el conjunto de equipos para la elaboración de briquetas, estos deberan esta limpios y calentados en una plancha a una temperatura que ronde entre 93°C Y 149°C.
- Se procede a colocar la mezcla dentro de los moldes, previamente colocar papel parafinado en la parte inferior del molde y en la parte superior al finalizar de colocada la mezcla.
 - Se continua con la aplicación de los golpes según el requerimiento (según el típo de tráfico de disño).

Tabla 52 *Número de golpes por cada lado de espécimen.*

Tipo de tráfico de diseño	N° de golpes
Tráfico Liviano	35
Tráfico Medio	50
Tráfico Pesado	75

Nota: Adaptado de Asphalt Handbook (MS-4), por (Asphalt Institute, 2007).

Prueba da estabilidad:

- Ubicar el molde con la muestra compactada en una prensa Marshall
- Aplicar una carga de comprensión sobre la muestra a velocidad constante hasta su deformación.

Prueba de fluidez:

- Durante la aplicación de la carga, se mide la de deformación (en milímetros) que experimenta la mezcla bajo la carga antes de fallar.

Cálculos:

Ecuación 30

Estabilidad corregida.

$$A = B \times C$$

Donde:

A = Estabilidad corregida.

B = Estabilidad (carga).

C = Factor de corrección de estabilidad.

Tabla 53 *Factores de corrección de estabilidad.*

Volumen del	Espesor	Razón de la	
espécimen, cm ³	mm	pulg	correlación
200 – 213	25,45	1,00 (1)	5,56
214 - 225	27	1,06 (1 1/16)	5
226 - 237	28,6	1,12 (1 1/8)	4,55
238 - 250	30,2	1,19 (1 3/16)	4,17
251 - 264	31,8	1,25 (1 1/4)	3,85
265 - 276	33,3	1,31 (1 5/16)	3,57
277 - 289	34,9	1,38 (1 3/8)	3,33
290 - 301	36,5	1,44 (1 7/16)	3,03
302 - 316	38,1	1,50 (1 1/2)	2,78
317 - 328	39,7	1,56 (1 9/16)	2,5
329 - 340	41,3	1,62 (1 5/8)	2,27
341 - 353	42,9	1,69 (1 11/16)	2,08
354 - 367	44,4	1,75 (1 3/4)	1,92
368 - 379	46	1,81 (1 13/16)	1,79

Volumen del espécimen, cm ³	Espesor del espécimen mm	Volumen del espécimen, cm ³	Razón de la correlación
380 - 392	47,6	1,88 (1 7/8)	1,67
393 - 405	49,2	1,94 (1 15/16)	1,56
406 - 420	50,8	2,00(2)	1,47
421 - 431	52,4	2,06 (2 1/16)	1,39
432 - 443	54	2,12 (2 1/8)	1,32
444 - 456	55,6	2,19 (2 3/16)	1,25
457 - 470	57,2	2,25 (2 1/4)	1,19
471 - 482	58,7	2,31 (2 5/16)	1,14
483 - 495	60,3	2,38 (2 3/8)	1,09
496 - 508	61,9	2,44 (2 7/16)	1,04
509 - 522	63,5	2,50 (2 1/2)	1
523 - 535	65,1	2,56 (2 9/16)	0,96
536 - 546	66,7	2,62 (2 5/8)	0,93
547 - 559	68,3	2,69 (2 11/16)	0,89
560 - 573	69,8	2,75 (2 3/4)	0,86
574 - 585	71,4	2,81 (2 13/16)	0,83
586 - 598	73	2,88 (2 7/8)	0,81
599 - 610	74,6	2,94 (2 15/16)	0,78
611 - 626	76,2	3,00 (3)	0,76

Nota: Tomado de (MTC, 2016, pág. 592)

Ecuación 31

Porcentaje de vacíos de la mezcla asfáltica compactada.

$$\%V = \left[1 - \frac{Pe_{bulk}}{Pe_{teorico}}\right] * 100\%$$

Donde:

%V = Vacíos de aire en mezclas asfálticas compactadas (%)

Pe_{bulk} = Peso específico bulk

Pe_{teórico} = Peso específico teórico máximo

Ecuación 32:

Gravedad específica aparente de la mezcla asfáltica compactada.

$$Gea = \frac{A}{D - E - \frac{D - A}{F}}$$

Donde:

Gea = Gravedad especifica aparente de la mezcla asfáltica compactada

A = Masa del espécimen seco en el aire.

B = Masa del espécimen seco cubiero.

E = Masa del espécimen cubierto dentro del agua.

F = Gravedad especifica de revestimiento determinada a 25°C.

Ecuación 33

Peso específico teórico máximo en el aíre.

$$Gea = \frac{A}{A + D - E}$$

Donde:

Gea = Peso específico teórico máximo en el aíre.

A = Masa de la muestra seca en el aire.

D = Masa del recipiente lleco con agua a 25°C.

E = Masa del recipiente lleno con agua y muestra a 25°C.

Ecuación 34

Porcentaje de asfalto que absorbe el árido de una mezcla asfáltica.

$$A_{ac} = \left[\frac{P_{tac}}{100 - P_{ta}} + \frac{G_{ac}}{G_{ag}} - \frac{100G_{ac}}{(100 - P_{tac})G_{tm}} \right] * 100\%$$

Donde:

 A_{ac} = Porcentaje de asfalto que absorbe el árido de una mezcla de pavimento asfáltico.

 $P_{tac} = \%$ CA.

 G_{ac} = Peso específico aparente del asfalto.

 G_{ag} = Peso específico promedio ponderado del agregado.

 G_{tm} = Peso específico teórico máximo de la muestra.

Ecuación 35

Peso específico aparente del espécimen.

$$G_e = \frac{A}{(B-C)}$$

Donde:

 G_e = Peso específico del aparente.

A = Peso del espécimen seco en el aire.

B = Peso en el aire del espécimen saturado con superficie seca.

C = Peso del espécimen en agua.

Ecuación 36

Peso unitario del espécimen.

$$P_{\mu} = G_e \times P_{\mu h}$$

Donde:

 G_e = Peso unitario del espécimen.

 G_e = Peso específico del aparente.

 P_{uh} = Peso unitario del agua.

ANEXO 3. RESULTADOS DE ENSAYOS REALIZADOS EN EL LABORATORIO DE LA UNIVERSIDAD NACIONAL DEL SANTA

INFORME DE ENSAYO

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO:

BACHILLERES : UBICACIÓN : RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE

CANTERA SANTA CECILIA

MTC E 201 - MUESTREO PARA MATERIALES DE CONSTRUCCION

MATERIAL	DESCRIPCION	PESO
AGREGADO GRUESO	PIEDRA CHANCADA	25.70 Kg
AGREGADO	ARENA GRUESA ZARANDEADA	27.70 Kg
FINO	AGREGADO GRUESO RETRITURADO	27.20 Kg

INFORME DE ENSAYO

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN PROYECTO

CANTERA SANTA CECILIA"

BACHILLERES : UBICACIÓN : RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE

CANTERA SANTA CECILIA

MTC E 202 - CANTIDAD DE MATERIAL FINO QUE PASA EL TAMIZ DE 75 μM (Nº 200) POR LAVADO

MATERIAL	DESCRIPCION	MUESTRA 1			MUESTRA 2			Α
IVIATERIAL	DESCRIPCION	В	С	Α	В	С	Α	PROMEDIO
AGREGADO GRUESO	PIEDRA CHANCADA	1000.20 g	999.80 g	0.04%	1500.10 g	1499.60 g	0.03%	0.04%
AGREGADO FINO	ARENA GRUESA ZARANDEADA	300.10 g	299.20 g	0.30%	500.00 g	498.90 g	0.22%	0.26%
AGREGADO FINO	AGREGADO GRUESO RETRITURADO	300.00 g	298.50 g	0.50%	500.20 g	499.10 g	0.22%	0.36%

- Porcentaje del material fino que pasa el tamiz de 75 µm (Nº 200) por lavado
- B = Peso seco de la muestra original, en gramos.
- C= Peso seco de la muestra después de lavado, en gramos.

INFORME DE ENSAYO

PROYECTO: "EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN

CANTERA SANTA CECILIA"

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN :

CANTERA SANTA CECILIA

MTC E 203 - PESO UNITARIO Y VACIOS DE LOS AGREGADOS

		PESO UNITARIO EN ESTADO SUELTO							
	MATERIAL	DESCRIPCION	D	MUESTRA + RECIPIENTE			ENTE	Pm,	Pu,
				V	M 1	M 2	M 3	FIIIs	ru _s
	AGREGADO GRUESO	PIEDRA CHANCADA	4524.60 g	2831.68 cm3	8391.70 g	8406.10 g	8403.30 g	8400.37 g	1.37 g/cm3
	AGREGADO FINO	ARENA GRUESA ZARANDEADA	4524.60 g	2831.68 cm3	9107.60 g	9110.20 g	9109.60 g	9109.13 g	1.62 g/cm3
		AGREGADO GRUESO RETRITURADO	4524.60 g	2831.68 cm3	8654.80 g	8651.00 g	8656.80 g	8654.20 g	1.46 g/cm3

PESO UNITARIO EN ESTADO COMPACTADO								
MATERIAL	DESCRIPCION	D	V	MUESTRA + RECIPIENTE			Pm.	Pu _c
		ŗ	V	M1 M2	M 3	FIIIc	Fu _c	
AGREGADO GRUESO	PIEDRA CHANCADA	4524.60 g	2831.68 cm3	8852.10 g	8866.20 g	8848.60 g	8855.63 g	1.53 g/cm3
AGREGADO FINO	ARENA GRUESA ZARANDEADA	4524.60 g	2831.68 cm3	9610.60 g	9614.40 g	9617.80 g	9614.27 g	1.80 g/cm3
AGREGADO FINO	AGREGADO GRUESO RETRITURADO	4524.60 g	2831.68 cm3	9140.80 g	9122.80 g	9138.10 g	9133.90 g	1.63 g/cm3

PESO DEL RECIPIENTE VACIO P = $Pm_c =$ PESO PROMEDIO DE LA MUESTRA COMPACTADA + RECIPII

VOLUMEN DEL RECIPIENTE $Pu_s =$ PESO UNITARIO SUELTO DEL AGREGADO V = PESO PROMEDIO DE LA MUESTRA SUELTA + RECIPIENTE $Pu_C =$ PESO UNITARIO COMPACTADO DEL AGREGADO $Pm_s =$

	PORCENTAJE DE VACIOS EN ESTADO SUELTO							
MATERIAL	DESCRIPCION	Pea	Pu _s	D	%Vs			
AGREGADO GRUESO	PIEDRA CHANCADA	2.62 g/cm3	1.37 g/cm3	0.998 g/cm3	47.69%			
AGREGA <mark>DO FINO</mark>	ARENA GRUESA ZARANDEADA	2.74 g/cm3	1.62 g/cm3	0.998 g/cm3	40.79%			
	AGREGADO GRUESO RETRITURADO	2.84 g/cm3	1.46 g/cm3	0.998 g/cm3	48.50%			

PORCENTAJE DE VACIOS EN ESTADO COMPACTADO						
MATERIAL	DESCRIPCION	Pea	Pu _c	D	%Vc	
AGREGADO GRUESO	PIEDRA CHANCADA	2.62 g/cm3	1.53 g/cm3	0.998 g/cm3	41.55%	
AGREGADO FINO	ARENA GRUESA ZARANDEADA	2.74 g/cm3	1.80 g/cm3	0.998 g/cm3	34.26%	
AGREGADO FINO	AGREGADO GRUESO RETRITURADO	2.84 g/cm3	1.63 g/cm3	0.998 g/cm3	42.52%	

Pe_a = PESO ESPECIFICO APARENTE DENSIDAD DEL AGUA

Pu_s = PESO UNITARIO SUELTO DEL AGREGADO %Vs = PORCENTAJE DE VACIOS EN ESTADO SUELTO PESO UNITARIO COMPACTADO DEL AGREGADO PORCENTAJE DE VACIOS EN ESTADO COMPACTADO

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN : CANTERA SANTA CECILIA

AGREGADO GRUESO (PIEDRA CHANCADA)

MTC E 204 - ANALISIS GRANULOMETRICO DE AGREGADOS GRUESOS Y FINOS

MUESTRA	M - 1	M - 2
PESO DE LA MUESTRA LAVADA SECA	1999.90 gr	3499.80 gr

ADEDTUDA ()	TAMIZ	PESO RETENIDO	PESO RETENIDO	% RETENIDO	% RETENIDO	% RET. ACUM.	% RET. ACUM.	% PASANTE	% PASANTE	% PASANTE	ASTM C3	3 (HUSO 7)
ABERTURA (mm)	IAWIZ	M - 1	M - 2	M - 1	M - 2	M - 1	M - 2	M - 1	M - 2	PROMEDIO	MIN	MAX
75.000	3"											
63.000	2 1/2"											
50.000	2"											
37.500	1 1/2"											
25.400	1"											
19.000	3/4"	0	0	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100.00%	100%	100%
12.700	1/2"	146.6	299.8	7.33%	8.57%	7.33%	8.57%	92.67%	91.43%	92.05%	90%	100%
9.510	3/8"	752.6	976.8	37.63%	27.91%	44.96%	36.48%	55.04%	63.52%	59.28%	40%	70%
6.350	1/4"	667.2	893.8	33.36%	25.54%	78.32%	62.01%	21.68%	37.99%	29.83%		
4.750	N° 04	374.1	1285.5	18.71%	36.73%	97.03%	98.75%	2.97%	1.25%	2.11%	0%	15%
3.360	N° 06	/							7.0			
2.360	N° 08		700			100.00%	100.00%					
2.000	N° 10	10	100									
1.190	N° 16					100.00%	100.00%					
0.840	N° 20							A				
0.600	N° 30					100.00%	100.00%	1				
0.425	N° 40	1						12		77		
0.297	N° 50					100.00%	100.00%	7				
0.250	N° 60			1010		7.000	777					
0.177	N° 80			111			-VI	-1			100	
0.150	N° 100				1	100.00%	100.00%					
0.075	N° 200								1		F	
	FONDO	59.4	43.9						- 7			

Tamaño Máximo Nominal Tamaño Máximo

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO:

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN :

CANTERA SANTA CECILIA

MTC E 204 - ANALISIS GRANULOMETRICO DE AGREGADOS GRUESOS Y FINOS

AGREGADO FINO (ARENA GRUESA ZARANDEADA)

MUESTRA	M - 1	M - 2
PESO DE LA MUESTRA LAVADA SECA	1999.80 gr	1499.90 gr

A DEDTUDA ()	TAMIZ	PESO RETENIDO	PESO RETENIDO	% RETENIDO	% RETENIDO	% RET. ACUM.	% RET. ACUM.	% PASANTE	% PASANTE	% PASANTE	ASTI	M C33
ABERTURA (mm)	IAMIZ	M - 1	M - 2	M - 1	M - 2	M - 1	M - 2	M - 1	M - 2	PROMEDIO	MIN	MAX
75.000	3"											
63.000	2 1/2"											
50.000	2"											
37.500	1 1/2"											
25.400	1"											
19.000	3/4"						7.17.0					
12.700	1/2"											
9.510	3/8"	0	0	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100.00%	100%	100%
6.350	1/4"	0	0	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100.00%		
4.750	N° 04	57.8	33.4	2.89%	2.23%	2.89%	2.23%	97.11%	97.77%	97.44%	95%	100%
3.360	N° 06	A	. 100	0.00%	0.00%	2.89%	2.23%	97.11%	97.77%	97.44%		
2.360	N° 08	226.8	171.1	11.34%	11.41%	14.23%	13.63%	85.77%	86.37%	86.07%	80%	100%
2.000	N° 10	79.3	54.4	3.97%	3.63%	18.20%	17.26%	81.80%	82.74%	82.27%		
1.190	N° 16	276.2	175.6	13.81%	11.71%	32.01%	28.97%	67.99%	71.03%	69.51%	50%	85%
0.840	N° 20	154	2	7.70%	0.00%	39.71%	28.97%	60.29%	71.03%	65.66%		
0.600	N° 30	222.2	277.6	11.11%	18.51%	50.82%	47.48%	49.18%	52.52%	50.85%	25%	60%
0.425	N° 40	189.5	123.7	9.48%	8.25%	60.30%	55.72%	39.70%	44.28%	41.99%		
0.297	N° 50	198.9	275.8	9.95%	18.39%	70.24%	74.11%	29.76%	25.89%	27.82%	10%	30%
0.250	N° 60	121.7		6.09%	0.00%	76.33%	74.11%	23.67%	25.89%	24.78%		
0.177	N° 80	119.2	114	5.96%	7.60%	82.29%	81.71%	17.71%	18.29%	18.00%		
0.150	N° 100	155.1	174.8	7.76%	11.65%	90.04%	93.37%	9.96%	6.63%	8.29%	2%	10%
0.075	N° 200	173.9	77	8.70%	5.13%	98.74%	98.50%	1.26%	1.50%	1.38%	0%	5%
	FONDO	25.2	22.5		-				1		1	

Según ASTM C33

Módulo de Finura 2.58

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN : CANTERA SANTA CECILIA

AGREGADO FINO (ARENA TRITURADA)

MTC E 204 - ANALISIS GRANULOMETRICO DE AGREGADOS GRUESOS Y FINOS

MUESTRA	M - 1	M - 2	
PESO DE LA MUESTRA LAVADA SECA	1999.95 gr	2999.90 gr	

ADEDTUDA (mana)	TAMIZ	PESO RETENIDO	PESO RETENIDO	% RETENIDO	% RETENIDO	% RET. ACUM.	% RET. ACUM.	% PASANTE	% PASANTE	% PASANTE	ASTI	VI C33
ABERTURA (mm)	IAWIIZ	M - 1	M - 2	M - 1	M - 2	M - 1	M - 2	M - 1	M - 2	PROMEDIO	MIN	MAX
75.000	3"											
63.000	2 1/2"											
50.000	2"											
37.500	1 1/2"											
25.400	1"											
19.000	3/4"						7.17.5					
12.700	1/2"											
9.510	3/8"	0	0	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100.00%	100%	100%
6.350	1/4"	0	0	0.00%	0.00%	0.00%	0.00%	100.00%	100.00%	100.00%		
4.750	N° 04	75.55	36.4	3.78%	1.21%	3.78%	1.21%	96.22%	98.79%	97.50%	95%	100%
3.360	N° 06	0	0	0.00%	0.00%	3.78%	1.21%	96.22%	98.79%	97.50%		
2.360	N° 08	267.40	457.2	13.37%	15.24%	17.15%	16.45%	82.85%	83.55%	83.20%	80%	100%
2.000	N° 10	218.7	446.8	10.94%	14.89%	28.08%	31.35%	71.92%	68.65%	70.28%		
1.190	N° 16	332.6	509.6	16.63%	16.99%	44.71%	48.33%	55.29%	51.67%	53.48%	50%	85%
0.840	N° 20	296.1	250.1	14.81%	8.34%	59.52%	56.67%	40.48%	43.33%	41.90%		
0.600	N° 30	139.5	225.6	6.98%	7.52%	66.49%	64.19%	33.51%	35.81%	34.66%	25%	60%
0.425	N° 40	181.9	239.8	9.10%	7.99%	75.59%	72.19%	24.41%	27.81%	26.11%		
0.297	N° 50	117.3	168.7	5.87%	5.62%	81.45%	77.81%	18.55%	22.19%	20.37%	10%	30%
0.250	N° 60	16.25	136.6	0.81%	4.55%	82.27%	82.36%	17.73%	17.64%	17.69%	1 1	
0.177	N° 80	67.4	118.9	3.37%	3.96%	85.64%	86.33%	14.36%	13.67%	14.02%	100	
0.150	N° 100	119.3	183.2	5.97%	6.11%	91.60%	92.43%	8.40%	7.57%	7.98%	2%	10%
0.075	N° 200	134.55	176.6	6.73%	5.89%	98.33%	98.32%	1.67%	1.68%	1.68%	0%	5%
	FONDO	33.4	50.4		-							

Según ASTM C33 2.3 < MF < 3.1

Módulo de Finura 3.42

PROYECTO: "EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN

CANTERA SANTA CECILIA"

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN :

CANTERA SANTA CECILIA

MTC E 205 - GRAVEDAD ESPECIFICA Y ABSORCION DE **AGREGADOS FINOS**

GRAVEDAD ESPECIFICA							
MATERIAL	DESCRIPCION	F	Р	w	Pe _m	Pe _{sss}	Pea
ACRECADO FINO	ARENA GRUESA ZARANDEADA	646.10 g	497.60 g	961.40 g	2.694 g/cm3	2.707 g/cm3	2.730 g/cm3
AGREGADO FINO	AGREGADO GRUESO RETRITURADO	669.90 g	496.40 g	990.50 g	2.767 g/cm3	2.787 g/cm3	2.824 g/cm3

F = PESO DE LA FIOLA LLENA DE AGUA A LA MARCA DE CALIBRACIÓN

PESO DE LA MUESTRA SECADA EN HORNO W = PESO DE LA FIOLA CON LA MUESTRA Y AGUA

PESO ESPECIFICO DE MASA SATURADO CON SUPERFICIE SECA

PESO ESPECIFICO DE LA MASA PESO ESPECIFICO APARENTE $Pe_a =$

ABSORCION					
MATERIAL DESCRIPCION Ab					
ACDECADO FINO	ARENA GRUESA ZARANDEADA	0.48%			
AGREGADO FINO	AGREGADO GRUESO RETRITURADO	0.73%			

PROYECTO: "EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN

CANTERA SANTA CECILIA"

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN :

CANTERA SANTA CECILIA

MTC E 206 - PESO ESPECIFICO Y ABSORCION DE AGREGADOS GRUESOS

PESO ESPECIFICO							
MATERIAL	DESCRIPCION	PC	Ps	Р	Pe _m	Pe _{sss}	Pea
AGREGADO GRUESO	PIEDRA CHANCADA	1365.80 g	2219.50 g	2207.90 g	2.586 g/cm3	2.600 g/cm3	2.622 g/cm3

PESO DE PIEDRA + CESTA (SUMERGIDA) PESO DE LA MUESTRA SECA AL HORNO

Pe_m = PESO ESPECIFICO DE LA MASA Ps = PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECA EN EL AIRE Pe_{sss} = PESO ESPECIFICO DE MASA SATURADO CON SUPERFICIE SECA PESO ESPECIFICO APARENTE Pe_a =

	ABSORCION			
MATERIAL	DESCRIPCION	Ps	Р	Ab
AGREGADO GRUESO	PIEDRA CHANCADA	2219.50 m3	2207.90 m3	0.53%

PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECA EN EL AIRE

P = PESO DE LA MUESTRA SECADA EN HORNO

PORCENTAJE DE ABSORCIÓN Ab=

PROYECTO :

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA"

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE

BACHILLERES : RODRIGUEZ VASQUEZ ELIA UBICACIÓN : CANTERA SANTA CECILIA

MTC E 207 - ABRASION LOS ANGELES (L.A.) AL DESGASTE DE LOS GREGADOS DE TAMAÑOS MENORES DE 37,5 MM (1 ½")

GRADACIÓN	В	ESFERAS	11
-----------	---	---------	----

PESO DE MUESTRA PASANTE 3/4" RETENIDO 1/2"	2500.10
PESO DE MUESTRA PASANTE 1/2" RETENIDO 3/8"	2500.00
PESO DE MUESTRA TOTAL	5000.10
PESO RETENIDO TAMIZ N° 12	4478.60
PESO PASANTE TAMIZ N° 12	521.50

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO:

BACHILLERES : UBICACIÓN : RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE

CANTERA SANTA CECILIA

MTC E 210 - METODO DE ENSAYO ESTANDAR PARA LA DETERMINACION DEL PORCENTAJE DE PARTICULAS FRACTURADAS **EN EL AGREGADO GRUESO**

		PESO	PESO	PESO	PORCENTAJE	PORCENTAJE		PORCENTAJI	E CORREGIDO
TAMAÑO DE	L AGREGADO	DE LA	UNA CARA		DE UNA CARA		GRANULOMETRIA		
		MUESTRA	FRACTURADA	FRACTURADAS	FRACTURADA	FRACTURADAS		FRACTURADA	FRACTURADAS
PASA TAMIZ	RETENIDO EN TAMIZ	gr	gr	gr	%	%	%	%	%
1 1/2"	1"								
1"	3/4"							07.50/	70.00/
3/4"	1/2"	1205	1150	1021	95.44%	84.73%	7.95%	97.5%	70.8%
1/2"	3/8"	301	295	203	98.01%	67.44%	32.77%		

PROYECTO:

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA"

BACHILLERES : UBICACIÓN : RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE CANTERA SANTA CECILIA

MTC E 215 - METODO DE ENSAYO PARA CONTENIDO DE **HUMEDAD TOTAL DE LOS AGREGADOS POR SECADO**

MATERIAL	DESCRIPCION	PESO DE TARA	PESO DE MUESTRA HUMEDA	PESO DE MUESTRA SECA	CONTENIDO DE HUMEDAD
AGREGADO GRUESO	PIEDRA CHANCADA	500.40	2734.60	2728.20	0.29%
AGREGADO FINO	ARENA GRUESA ZARANDEADA	493.10	2760.30	2749.90	0.46%
AGREGADO FINO	AGREGADO GRUESO RETRITURADO	354.80	2588.70	2576.10	0.57%

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO:

BACHILLERES : UBICACIÓN : RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE

CANTERA SANTA CECILIA

MTC E 223 - PARTICULAS CHATAS Y ALARGADAS EN AGREGADOS

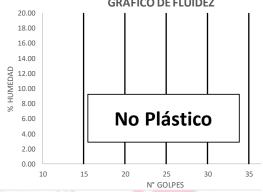
ABERTURA (mm) TAMIZ		PESO		CHATAS Y ALARGADAS (5:1)				
ABERTURA (IIIIII)	TAIVIIZ	MUESTRA	PESO	%	% GRANUMOLETRIA	% CORREGIDO		
25.400	1"	1	70	316	YTHIN			
19.000	3/4"		ď					
12.700	1/2"	903.4	25.4	2.81%	7.95%	0.22%		
9.510	3/8"	503.6	31.6	6.27%	32.77%	2.06%		
6.350	1/4"	430.2	32.4	7.53%	29.45%	2.22%		
4.750	N° 04	163.2	15.6	9.56%	27.72%	2.65%		

7.30% **PARTICULAS CHATAS Y ALARGADAS (%)**

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN :

CANTERA SANTA CECILIA


MTC E 111 - DETERMINACIÓN DEL LIMITE PLASTICO (L.P) DE LOS SUELOS E INDICE DEPLASTICO (I.P.)

LIMITE LÍQUIDO - ARENA ZARANDEADA					
DESCRIPCION	1		2	3	
Nro. de Recipiente					
Masa de Recipiente					
Masa de Recipiente + Suelo Humedo		NP			
Masa Recipiente + Suelo Seco					
N° De Golpes					
Contenido de Humedad					

LIMITE PLÁSTICO - ARENA ZARANDEADA					
DESCRIPCION	1	2	3		
Nro. de Recipiente	ĺ				
Masa de Recipiente	þ				
Masa de Recipiente + Suelo Humedo		NP			
Masa Recipiente + Suelo Seco]			
N° De Golpes					
Contenido de Humedad	100				

		LL: NP			LL: NP		LL: NP	
				GR	ÁFICO D	E FLUIDE	Z	
20.	00	1	ı		1	ı	l	ı
18.	00							
16.	00							
14.	00							

<u>Limite Líquido</u> <u>Limite Líquido</u> <u>Indice de Plasticidad</u>

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA" PROYECTO:

<u>Limite Líquido</u>

LL: NP

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN : CANTERA SANTA CECILIA

MTC E 111 - DETERMINACIÓN DEL LIMITE PLASTICO (L.P) DE LOS SUELOS E INDICE DEPLASTICO (I.P.)

LIMITE LÍQUIDO - PIEDRA RETRITURADA					
DESCRIPCION	1	2	3		
Nro. de Recipiente					
Masa de Recipiente					
Masa de Recipiente + Suelo Humedo		NP			
Masa Recipiente + Suelo Seco					
N° De Golpes	L				
Contenido de Humedad					

LIMITE PLÁSTICO - PIEDRA RETRITURADA					
DESCRIPCION	1	2	3		
Nro. de Recipiente					
Masa de Recipiente	147				
Masa de Recipiente + Su <mark>elo Hume</mark> do	76	NP			
Masa Recipiente + Suelo Seco					
N° De Golpes					
Contenido de Humedad	K				

	GR	ÁFICO D	E FLUIDE	Z
20.00	1	l	l	1 1
18.00				
16.00				
14.00				
Q 12.00				
12.00 H 10.00 8.00				L
≝ 8.00				
6.00		lo Plá	ástico)
4.00				
2.00				
0.00				

N° GOLPES

LL: NP

<u>Limite Líquido</u> <u>Índice de Plasticidad</u>

LL: NP

35

PROYECTO:

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA"

RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE BACHILLERES : UBICACIÓN : CANTERA SANTA CECILIA

MTC E 114 - METODO DE ENSAYO ESTANDAR PARA EL VALOR **EQUIVALENTE DE ARENA DE SUELOS Y AGREGADO FINO**

ARENA ZARANDEADA					
DETERMINACIÓ N°	1	2	3		
SATURACIÓN INICIAL	10:44	10:46	10:47		
SATURACION FINAL	10:54	10:56	10:57		
PRUEBA DE ENSAYO INICIAL	10:55	10:57	11:00		
PRUEBA DE ENSAYO FINAL	11:15	11:17	11:20		
LECTURA - ARCILLA RETENIDA (pulg.)	5.1	4.6	4.9		
LECTURA - ARENA RETENIDA (pulg.)	3.4	3.2	3.2		
EQUIVALENTE DE ARENA	67%	70%	66%		
EQUIVALNTE DE ARENA PROMEDIO 67.7%					

68%

PROYECTO:

"EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN

CANTERA SANTA CECILIA"

BACHILLERES : UBICACIÓN : RODRIGUEZ VASQUEZ ELIAN RUBEN / VINCHALES SALAZAR JOSIAH GEORGE CANTERA SANTA CECILIA

MTC E 114 - METODO DE ENSAYO ESTANDAR PARA EL VALOR **EQUIVALENTE DE ARENA DE SUELOS Y AGREGADO FINO**

ARENA TRITURADA						
DETERMINACIÓ N°	1	2	3			
SATURACIÓN INICIAL	11:55	12:00	12:04			
SATURACION FINAL	12:05	12:10	12:14			
PRUEBA DE ENSAYO INICIAL	12:08	12:12	12:17			
PRUEBA DE ENSAYO FINAL	12:28	12:32	12:37			
LECTURA - ARCILLA RETENIDA (pulg.)	5.3	5.7	5.6			
LECTURA - ARENA RETENIDA (pulg.)	4	4.1	3.9			
EQUIVALENTE DE ARENA	76%	72%	70%			
EQUIVALNTE DE ARENA PROMEDIO	72.7%					

ANEXO 4. RESULTADOS DE ENSAYOS REALIZADOS EN EL LABOBORATORIO DE KAE INGENIERIA

ANEXO 4.1. ENSAYOS AL AGREGADO GRUESO

Registro Indecopi Nº 028979-2021/DSD

CC-EPFM-FT-02 PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE REGISTRO N°:

MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA

SOLICITA:

2866.90

UBICACIÓN

Peso Inicial Seco (gr)

PAGINA N°: 1 de 2

25/11/2024

FECHA:

ENSAYO DE INDICE DE FORMA Y DE TEXTURA DE AGREGADOS

(ASTM D-3398, MTC E208)

	Peso iniciai Seco (gr)	2866.90	27000	AGREGAL	OO GRUESO ASTM C33/C3	3M	Lan LOV
	Peso Lavado y Seco (gr)	2866.80	<i>y</i>	and Dec	2010	- iele	and the same
	ABERTURA (mm)	TAMIZ	RETENIDO MATERIAL (gr)	RETENIDO PARCIAL %	RETENIDO ACUMULADO %	% PASA	- Jude Judes
30	19.00	3/4"	0.0	0.0	0.0	100.0	. KA
	12.50	1/2"	713.5	24.9	24.9	75.1	into
	9.50	3/8"	838.3	29.2	54.1	45.9	O. Action
	4.75	N° 4	1288.7	45.0	99.1	0.9	1007 C1
CA TO A	2.36	N° 8	17.3	0.6	99.7	0.3	The state .
	1.18	N° 16	9.0	0.3	100.0	0.0	10
	0.60	N° 30	0.0	0.0	100.0	0.0	sienew sail
	0.30	N° 50	0.0	0.0	100.0	0.0	all - augen
	0.15	N° 100	0.0	0.0	100.0	0.0	- 100
	a Jugenieni	gugeni	TOTAL	100.0	ia Jugenierii	a Magerie	ria Angenieria Na
KAL K	S: Peso específico aparente s	seco, de la fracción	n del tamaño de ag	gregado.			
	V: Volumen del molde, mL (c	m3)	· mtd		innia	aia N	unia in
	W10: Peso neto promedio de	l agregado en el m	olde compactado	con 10 golpes por	capa, gr.		
	W50: Peso neto promedio de	l agregado en el m	olde compactado	con 50 golpes por	capa, gr.		
in the mid	V10: Vacíos en el agregado o	compactado con 10) golpes por capa,	%.	A STATE OF THE PARTY OF THE PAR		Mar Khan

				oned	ie	nia	inth				ia
KAL K	S: Peso espec	ífico aparente se	eco, de la fracción	n del tamaño de agi	egado.						
	V: Volumen de	l molde, mL (cm	3)	med				unia		nia	. Ja
		6 100-7	i Li Dai	olde compactado d	- 1100	^					
				nolde compactado c		or capa, gr.					
nia ienia) golpes por capa, 9) golpes por capa, 9	14.3		mia		in Wh	- mil	
	0.400	rer agregado co	mpaotado com oc	y goipes por oupa,							
				6100-7							
mia	: oned	Tamiz	S	V	W10	W50	V10	V50	1		34
		1/2"	2.82	3425.748	4325.0	9458.0	55.155	1.931			
		3/8"	2.84	3425.748	4352.0	9524.0	55.268	2.108			
" W. W.		N° 4	2.80	3425.748	4315.0	9587.0	55.085	0.208			
						ioned				nia .	
	OBSERVACIONES	La muestra fue	proporcionada p	oor el solictante.	0.00	MOO				Rev. H.L.V. Ejec. H.L.D.	
										2,00. 1.12.0.	
ionia inia				0	inte		Ja.		lane a	14	
		Д., Д.,	nevie;	11000	Paris .			HOE	NIE		
		(C. 17)	1 / _					3	2		

Jugenieria KAE Juge AE Jugenieria KA

genieria KAE Jugenieria

KA - Jugenieria

n. aenieria W

Registro Indecopi N° 028979-2021/DSD

REGISTRO N°: CC-EPFM-FT-01 PAGINA N°: UBICACIÓN : 25/11/2024 Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

ENSAYO DE INDICE DE FORMA Y DE TEXTURA DE AGREGADOS NAE Jugenieria NA

(ASTM D-3398, MTC E208)

KAE Ingenieria ngenieria KAE la: Índice de Partículas

wienea a revien						ienia mienia
WAE	la: Índice de Partículas	Egage				
regionia and	Aber (m		Gradación del Agregado %	la	Ponderación	ieria KAL
and the land	12.	.50 1/2"	24.888	36.460	9.074	rgen - Jugen
wia W	9.9	50 3/8"	29.241	36.558	10.690	KAL KAL
evience	4.	75 N° 4	44.951	36.804	16.544	nea inea
c Juger LE		Total	99.997	pence	36.308	I agent - agen
W. Kar		WA				
mienta : on	OBSERVACIONES: La mu	estra fue proporcionad	da por el solictante.	nia .	unia T	Rev. H.L.V. Ejec. H.L.D.
gon angener						ACHILL ACHILLA
WAL W						
ionia	and No	mia	Le NY KIN	ia	N'A	Why What
Augento a re			western a		and or for	
100			104		HOENIER	
AL PART		W. 136			CENIE	

A Jugenieria MA Ingenieria KAE Jugenieria KAE Jugeni mieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria mgenera MAE Jagenieria MAE Jagenieri AE Jugenieria KAE Jugenieria KAE Jugenieria KAI

Registro Indecopi N° 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°:	CC-EPF-DUR-01
- Oak	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PÁGINA N°:	01 de 01
1	CANTERA SANTA CECILIA	- Janes	
SOLICITA	: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	W 233	
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

DURABILIDAD AL SULFATO DE SODIO O SULFATO DE MAGNESIO

(ASTM C-88, MTC E209, NTP 400.016)

Información de Muestra y Ensayo

Clase de Solución : Material Sulfato de Magnesio Ciclos

Cantera Inmersion de Muestra : 16 a 18 horas por ciclos

AGREGADO GRUESO - ANALISIS CUANTITATIVO

V	N°	Tamaño	%	Peso Requerido gr	Peso Inicial gr	Peso Final gr	Perdida de Peso gr	Perdida de Peso %	Gradación Original %	Perdida Corregida %
	1,000	2 1/2" a 1 1/2"	100	5000 ± 300		meth	.14	Re.	and the	14.
Ja.	OSALO	2 1/2" a 2"	60	3000 ± 300	a selle		million		W. D.	- ione
47		2" a 1 1/2"	40	2000 ± 200	1007	- 104	- K	1 000	- 000	1000
	2	1 1/2" a 3/4"		1500 ± 50	44 0		16 37	1	ME	W. A.L
لال	24	1 1/2" a 1"	67	1000 ± 50	N. Fai	1.00	a	10.5		a ·
		1" a 3/4"	33	500 ± 30	Du-	" OHLO	i	one	- autor	ion
	3	3/4" a 3/8"	-	1000 ± 10	C 1 100	7	Day Por	. 5 1	w	Out ele
100	1	3/4" a 1/2"	67	670 ± 10	669.2	665.1	4.1	0.61	56.9	0.349
	med	1/2" a 3/8"	33	330 ± 5	328.6	324.5	4.1	1.25	34.9	0.435
p A	4	3/8" a N°4		300 ± 5	302.4	289.9	12.5	4.13	3.5	0.146

TOTAL DE DESGASTE

0.93%

AE Jugenie

OBSERVACIONES:

ia NAE Jugenieria NAE

mieria KAE Jugenieria

Jugenieria KAE Jugenieria

AE Jugenieria KAE Jugeni

genieria KAE Jugenieria KA

La muestra de agregados fue proporcionada por el solicitante KAE Jugenienia geniania KAE Jugeni

gagenienia genieria KAE Jugenier jeria KAE Jugenieria K Jugenieria WAE Jugeni KGENIER Jugenienia KAE Jugenienia KAE

Registro Indecopi Nº 028979-2021/DSD

CC-EPF-TER-01 REGISTRO N°: **PROYECTO** EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN 01 de 01 PÁGINA Nº: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash FECHA: 25/11/2024

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (FRIABLES) EN AGREGADOS

Información del Ensayo

Material: Cantera: Santa Cecilia Piedra Chancada Periodo de inmersión : 24 ± 4 horas

Agregado Grueso

2" 1 1/2" 5000 N° 4 0.05 1 1/2" 3/4" 3000 N° 4 0.05 3/4" 3/8" 2000 N° 4 66.7 2000.2 1998.6 1.6 0.08 0.05 3/8" N° 4 1000 N° 8 33.3 1000.3 998.6 1.7 0.17 0.06	Tamiz a	emplear	Mín. Requerido	Tamiz para remover residuos	Gradación original	Peso inicial	Peso final	Per	didas	Terrones y particula friables corregidas	
1 1/2" 3/4" 3000 N° 4 - - - - 0.05 3/4" 3/8" 2000 N° 4 66.7 2000.2 1998.6 1.6 0.08 0.05 3/8" N° 4 1000 N° 8 33.3 1000.3 998.6 1.7 0.17 0.06 DBSERVACIONES:	- 1 04	7 0	(g)	residuos	Uligiliai	(g)	(g)	(g)	(%)	(%)	EW
3/4" 3/8" 2000 N° 4 66.7 2000.2 1998.6 1.6 0.08 0.05 3/8" N° 4 1000 N° 8 33.3 1000.3 998.6 1.7 0.17 0.06 100.0 DBSERVACIONES:	2"	1 1/2"	5000	N° 4	C 1/00	7. 1	To the		100	0.05	Ι.
3/8" N° 4 1000 N° 8 33.3 1000.3 998.6 1.7 0.17 0.06 100.0 0.05 DBSERVACIONES:	1 1/2"	3/4"	3000	N° 4		16.12	-	-	-	0.05	Z N
DBSERVACIONES:	3/4"	3/8"	2000	N° 4	66.7	2000.2	1998.6	1.6	0.08	0.05	20.
OBSERVACIONES:	3/8"	N° 4	1000	N° 8	33.3	1000.3	998.6	1.7	0.17	0.06	
		1004	- 1009	C 1 100	100.0		~ ~ 4	(ALC)	. 1	0.05	n all
ionia KAE inia KAE inia KAE MAE MAE MAE	BSERVACION		الأوار	10.	10	ia				in the	1.1
	BSERVACION		gregados fue _l	oroporcionada por el sol	icitante.	niemia \	gewierik			enia Ricerie	nia 1

OBSERVACIONES:

AE Jugenieria WAE Jugenieria WAE

Jugenieria KAE Jug KAE Jugenier mieria NAE Jugemieria NAE Jugemieria NAE Jugemieria NAE Jugemieria NAE Jugemieria TOENIER AE Jugenieria NAE Jugenieria NAE Jugenieria NAE genieria KAE Jugenieria KAE Jugenieria KAE Jugenieria

Registro Indecopi Nº 028979-2021/DSD

PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO Nº: CC-EPF-IDU-01 ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO 01 de 01 PÁGINA N°: SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR **UBICACIÓN** 25/11/2024 Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash FECHA:

FORMATOS DE ENSAYO DE INDICE DE DURABILIDAD

MTC E 214

Información de Muestra y Ensayo

ITEM		Jenia -	ENSAYOS	
1	Muestra Nº	1 0 000 1 0 000 00 00 00 00 00 00 00 00	2,	3
2	Hora de entrada a saturación	11:35	11:37	11:39
3	Hora de salida de saturación (mas 10")	11:45	11:47	11:49
4	Hora de entrada a decantación	11:47	11:49	11:51
5	Hora de salida de decantación (mas 20")	12:07	12:09	12:11
6	Altura máxima de material fino	4.60	4.80	4.70
7	Altura máxima de la arena	3.00	3.20	3.10
8	Indice de Durabilidad (%)	66.0	67.0	66.0
9	Promedio (%)	A. W. Char	66.3	eller out

genieria KAE Jugenieria.

ieria KAE Jugenieria ieria KAE Jugenieria AE Jugenieria KAE Jugenieria KAE Jugenier Vigear Alfonso Herrera Lázaro
NGENIERIG CIVIL
REG CIT Nº 216067 HOENIEN AF Jugenieria KAF Jugenieria KAF Jugenieria KAF Jugenieria MAE Jugeni genieria NAE Jugenieria NAE Jugenieria NAE Jugenieria NAE Jugenieria

A Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

ro : <u>I</u>	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRE	ETO ASFÁLTICO EN	REGISTRO N° :	CC-EPF-CAA-0
A POWE	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO	O RETRITURADO EN	PAGINA N° :	01 DE 01
	CANTERA SANTA CECILIA	L . I MAN	E " . E	
Jac 🧏	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	No.	_ V. P.	
N : _	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento	: Ancash	FECHA:_	25/11/2024
10.43/0	A A CANALATA TIMA DA	LOO COMPUESTOS	DE AZUEDE E	
ISAYO	DE DETERMINACIÓN CUANTITATIVA DE		DE AZUFRE E	EN LOS
	AGREGADO MTO 5 240 - INV			
	MTC E 218 - INV-E	:-233 U		
	Información de Mu	uestra (1986)		
	información de Mi	ucstra.		
	Santa Cecilia — Danie		· MARIN	
Can	tera : Temp. Secado6	0 °C Agregado	:Grueso	
Mue	stra :60 gr Secado24	hrs.		
. W	Determinación del contenido de los compuestos de azu	fre totales		
ia -	inta inta	34	ania.	14.
	P1: Peso del Sulfato de Bario	10.00	gr.	
V 'i	Pm Ba SO4: Peso molecular del BaSO4	233.40	gr.	
	Pm SO4: Peso molecular del SO4	96.06	gr.	
	m1: Peso de la muestra seca	27.00	gr.	
		:5100	_ william	
	% SO4: Contenido total de compuestos de azufre	0.41	%	
	extraíble por disgregación alcalina oxidante	E "	I KE	
300	The Man was the same of the	The state of		W
	Determinación del contenido de los compuestos de azu	tre en estado de sulfatos		
1000	- Augen Digeren - Aug	10.00	T and a differ	
	P2: Peso del Sulfato de Bario	233.40	gr.	
	Pm Ba SO4: Peso molecular del BaSO4	96.06	gr.	
	Pm SO4: Peso molecular del SO4	27.50	gr.	
^	m2: Peso de la muestra seca	0.44	grain gr. Se	
	% SO4: Contenido total de compuestos de azufre	1007	- C 10t	
	en estado de SO4 extraíble por disgregación	0.48	%	
	alcalina en ausencia de oxidantes	Life Control	14.	
della	a server a server suit			
7	Determinación del contenido de sulfuros totales			
WA	WALL W	32.06	T or	
-	Pa S: Peso atómico del S	32.00	Д ^{9і.}	. W
	Contracide de Cultimas Tables	0.00	2000	
1 100	Contenido de Sulfuros Totales	0.09	%	
14.	OBSERVACIONES:	W. W.	Rev. H	ł.L.V.
	La muestra fue proporcionada por el solicitante.		/ Ejec. H	II D

KAE Jugen

n. newieria W

Registro Indecopi Nº 028979-2021/DSD

PROYECTO:	EVALUACIÓN DE PROPIEDADES FÍSI	CO-MECÁNICAS DEL CO	NCRETO ASFÁLT	ICO EN	REGISTRO N° :	CC-EPF-CA
- nuger	CALIENTE MODIFICADO CON RESIDU	JOS DEL AGREGADO GE	RUESO RETRITUR.	ADO EN	PAGINA N° :	01 DE 01
	CANTERA SANTA CECILIA	- AL	N. F.	Total N		
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIA	H VINCHALES SALAZAR	N. A.	W. W.		
UBICACIÓN:	Distrito: Nuevo Chimbote - Provin	icia: Santa - Departan	nento: Ancash	enior.	FECHA:_	25/11/202
ENGAY	O DE DETERMINACIÓN (PI I A NITIT A TIVA	DE LOS CO	MDUESTOS	DE AZUEDE E	EN L OS
LNOAT	TO DE DETERMINACION (AGREG		WII OLOTOO L	DE AZOI INE E	IN LOS
		MTC E 218 - I				
		Información d	lo Mucotro			
		Información d	ie iviuestra			
C	Santa Cecilia antera :	Temp. Secado	60 °C	Agregado:	Fino	
	a protection is a contraction	and the state of	:07250	mier	:014	
A FIRM	uestra : 60 gr	Secado	24 hrs.			
	Determinación del contenido de	e los compuestos de	azufre totales			
med	: nnta	A VIII	11.6	12	mid.	1.4
	P1: Peso del Sulfato de Bario		, di	10.00	gr.	
	Pm Ba SO4: Peso molecular del	BaSO4	anyen.	233.40	gr.	
	Pm SO4: Peso molecular del SO	4	- 1	96.06	gr.	
	m1: Peso de la muestra seca	14	Lio B	26.90	gr.	
			ouil _	:07000		
	% SO4: Contenido total de com extraíble por disgregación alo		- 00	0.40	%	
W	extraible por disgregacion all	Salina Oxidante	AL I	W. Par		
	Determinación del contenido de	e los compuestos de	e azufre en esta	do de sulfatos		30
	and a relief	- and Dis	A RESULT.	, ien		
	P2: Peso del Sulfato de Bario		elone -	10.00	gr.	
	Pm Ba SO4: Peso molecular del	BaSO4	- A D	233.40	gr.	
	Pm SO4: Peso molecular del SO4	4	14	96.06	gr.	
	m2: Peso de la muestra seca		Dir.	27.20	gr.	
		- 1000	~ 100°	- n.40		
	% SO4: Contenido total de com en estado de SO4 extraíble p	or disgregación	77	0.44	%	
	alcalina en ausencia de		5.6		Re.	
	Determinación del contenido de	e sulfuros totales				
	AL KAL		W AND	22.00	at A.	
and the	Pa S: Peso atómico del S		Ļ	32.06	gr.	Y
	Contenido de Sulfuros Totales		anie"	0.06	0/	
	Contenido de Sulldros Totales		all en	0.06	- 0 200	
	KAL KAL					
	OBSERVACIONES:	porcionada por el solicit	ante	30	Rev. H	
	A delay	19 Section 2010	, A1	die die	JOSEPH TO	anien.
	E . 1007 C 21190	1		HOE	NIED OUL	
W. K.P		PV LIB		1 3	7	
	KAE Imperioria	All was a	. mil	A AE	8	
	Victor Alfons	Herrera Lazaro		12	ENCIA	

KAE Jugenieria Registro Indecopi N° 028979-2021/DSD

Jagenieria KAE Jagen Jel C E Jugenieria

PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

ASFÁLTICO EN CALIENTE MODIFICADO CON SET

AGREGADO CRUET AE Jugenieria

KAE Jagen

GENERICIA) KAE Jugenienia K

AE Jagenieria KA UBICACIÓN: Distrito: Nuevo Chimbote, Provincia: Santa, Departamento: Ancash

FECHA: 25/11/2024

Muestra	Piedra Chancada	Norma
Sales Solubles Totales	0.46 %	N.T.P. 339.152.2002
Partículas Livianas	0.34 %	N.T.P. 400.023
genierus Jugenieru	Jugenieria Jugenie	- nagenieria - nagen
oservación:	· agregados fue proporcionada	

AE Jugenieria KAE Jugen

genieria NAE Jugenieria NAE

Jugenieria VAE Jugenia VAE Jugenia Jagenieria KAE Jagen

KAE Ingeniery

ANEXO 4.2. ENSAYOS AL AGREGADO FINO – ARENA ZARANDEADA

Registro Indecopi Nº 028979-2021/DSD

CC-EPFM-FT-01 PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE REGISTRO N°:

MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA

SOLICITA:

500.00

UBICACIÓN

Peso Inicial Seco (gr)

PAGINA N°:

FECHA: 25/11/2024

ENSAYO DE INDICE DE FORMA Y DE TEXTURA DE AGREGADOS

(ASTM D-3398, MTC E208)

101000	Peso iniciai Seco (gr)	500.00		AGREG	ADO FINO ASTM C33/C33N	500 LLD	Land Ou
Mary Date Comment	Peso Lavado y Seco (gr)	373.60	<i>y</i> -	ALL DEVE	. 0 (4)	i en	- outles
WAE WAF	ABERTURA (mm)	TAMIZ	RETENIDO MATERIAL (gr)	RETENIDO PARCIAL %	RETENIDO ACUMULADO %	% PASA	- Juger Juger
34	19.00	3/4"	0.0	0.0	0.0	100.0	· What
and letter	12.50	1/2"	0.0	0.0	0.0	100.0	into conto
appear - 1 apr	9.50	3/8"	0.0	0.0	0.0	100.0	O. Alexand
AL DE	4.75	N° 4	10.7	2.1	2.1	97.9	1007 C 1
	2.36	N° 8	37.5	7.5	9.6	90.4	The state .
ener mich	1.18	N° 16	74.2	14.8	24.5	75.5	100
A ROBULLO	0.60	N° 30	100.4	20.1	44.6	55.4	iener mi
C THE SE	0.30	N° 50	85.9	17.2	61.7	38.3	all - nage
N AL	0.15	N° 100	64.9	13.0	74.7	25.3	- 100
genieria gagenier	ia Jugenieni	gageni	TOTAL	74.7	na genieri		ria Angenieria Ka
White W	S: Peso específico aparente	seco, de la fracciór	del tamaño de ag	regado.			
ieria	V: Volumen del molde, mL (c	:m3)	med		innia	ala No	unia in
gagem nage	W10: Peso neto promedio de	el agregado en el m	olde compactado	con 10 golpes por	capa, gr.		
- AL	W50: Peso neto promedio de	el agregado en el m	olde compactado	con 50 golpes por	capa, gr.		
JA Mila	V10: Vacíos en el agregado o	compactado con 10	golpes por capa,	%.	A Part		Mar What

V50: Vacíos en el agregado compactado con 50 golpes por capa, %.

, mL (cm3	3) (4	ón del tamaño de ag	Pro	.in		1		W	
and)	, a	molde compactado o	con 10 golpes por	capa, gr.					
	<u>ا</u> ا	molde compactado o	- 1 00	' · · · · · · · · · · · · · · · · · · ·					
		10 golpes por capa,		oupe, g					
		50 golpes por capa,	- 14. W		mia		14	will	
yauo coi	прастацо соп	ou guipes pui capa,	76.						
p [P		- [a.D)~		00-7		1000			
miz	s	v	W10	W50	V10	V50			
16	2.6	3425.748	5482.0	8512.0	38.129	3.932			
	2.6	3425.748	5471.0	8613.0	38.522	3.215			
_			5445.0	8725.0	38.787	1.913			
30	2.6	3425.748	3443.0			7			
30 50 100		3425.748 3425.748	5489.0	9582.0	37.807	-8.568			
30	2.6		1 / 50	9582.0	37.807	-8.568			

Jugenieria KAE Juge nieria KAE Jugenieria OBSERVACIONES: La mue genieria KAE Jugenier

KA - Jugenieria

Jugenieria KAE CENIER

Jugenieria KAE Jugi Rev. H.L.V. Ejec. H.L.D. ngenieria KAE

n. aenieria W

ngenieria KAE

Registro Indecopi N° 028979-2021/DSD

REGISTRO N°: UBICACIÓN :

KAE Jugenieria KA ENSAYO DE INDICE DE FORMA Y DE TEXTURA DE AGREGADOS

(ASTM D-3398, MTC E208)

KAE Jugenieria ngenieria KAE la: Índice de Partículas

ienia mier				enia inia	10		inia inia
	la: Índice de Part	ículas					
: mia	ionia	Abertura (mm)	Tamiz	Gradación del Agregado %	la	Ponderación	KAL
	- 00	1.18	N° 16	14.8	14.678	2.178	newierum angenierum
	Dr.	0.60	N° 30	20.1	15.349	3.082	WAL THE
enta med	://	0.30	N° 50	17.2	16.006	2.750	aid to the King
	walle we	0.15	N° 100	13.0	17.401	2.259	anience a seni
		- 100	Total	74.7	4/ B	11.971	E Just
ienea	BSERVACIONES: <u>L</u>	a muestra fu	e proporcionada p	oor el solictante.	in	N. K.P	Rev. H.L.V. Ejec. H.L.D.
							ACATO SE EJec. H.L.D.
ionia	Lia V		mia	N. W.	Lia	No.	KALL IN KALL
				A CONTRACTOR OF THE		builtine	
	MAE	ا در المعال	1 /	TE JOST	x ?	GENIE	

GENEROLA Mieria KAE Jagenieria

Registro Indecopi N° 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	med	REGISTRO N°:	CC-EPF-DUR-01
- 000	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	, v	PÁGINA N°:	01 de 01
	CANTERA SANTA CECILIA	A	- 1004	
SOLICITA	: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	Pho.	16 19 19	
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash		FECHA:	15/11/2024

DURABILIDAD AL SULFATO DE SODIO O SULFATO DE MAGNESIO

Información de Muestra y Ensayo

Ciclos : Material

AGREGADO FINO - ANALISIS CUANTITATIVO

GREGADO FINO - ANALIS	SIS CUANTITATIVO		anewill'	- 10	geniene		
Tamaño	Peso Requerido gr	Peso Inicial gr	Peso Final gr	Perdida de Peso gr	Perdida de Peso %	Gradación Original %	Perdida Corregida %
3/8 a N°4	100	100.0	98.5	1.5	1.50	5.7	0.086
N°4 a N°8	100	100.0	98.2	1.8	1.80	41.5	0.748
N°8 a N°16	100	100.0	97.9	2.1	2.10	14.7	0.309
N°16 a N°30	100	100.0	98.4	1.6	1.60	17.0	0.272
N°30 a N°50	100	100.0	97.1	2.9	2.90	5.6	0.164
N°50 a N°100	Mr. W		LAL	1100	ME	4.8	AL D
Pasan N°100	inter	.in	101	- mile	- 5	10.7	Ja.

TOTAL DE DESGASTE 1.58% KAE Jugenieria KAE

AE Jugenie

OBSERVACIONES: AE Jugenienia

Jagenieria KAE Jagenia

AE Jagenieria KAE Jagenier

genieria KAE Jugenieria KAE

genieria KAE Jugenieria ia KAE Jugenieria KAE Jugenii Jugenieria

Viceor Alforso Harrera Lázaro Ingeniero Cava REG CIP Nº 216067

AE Jugenieria KA genieria KAE Jugenier jenia KAE Jugewienia K Jugenieria NAE Jugeni SCENIER Jugenieria KAE Jugenieria KAE

Registro Indecopi Nº 028979-2021/DSD

PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN

CC-EPF-TER-01 **REGISTRO N°:**

PÁGINA Nº:

CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN

ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

25/11/2024 Distrito: Chimbote - Provincia: Santa - Departamento: Ancash

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (FRIABLES) EN AGREGADOS

(MTC E212 - ASTM C-142)

Información del Ensayo

Cantera : _ Santa Cecilia Periodo de inmersión :

Agregado Fino

Tamiz a	ı emplear	Mín. Requerido	Tamiz para remover residuos	Gradación original	Peso inicial	Peso final		lidas	Terrones y particulas friables corregidas	
	40,000	(g)		Original	(g)	(g)	(g)	(%)	(%)	
N°4	N° 16	25	N° 20	. Dall	100.00	99.31	0.69	0.69	0.69	
									0.69	
100		10. V	What I							
BSERVACIONE		J. Con.	mea	3090					30	
	La muestra de ag	gregados fue	proporcionada por el soli	citante.		i Para				
	34		a second				1. 12	100	TALL STATE OF	
			1000				nia /	1 316		
			0.00/				_/^	della		
	Mr.						N. C.	41		
- 1 K		1/2					GENIER	X=LD		
				20		mia 13	5 1/2	7	aid.	
	Vice Vice	100	Marie Comment			A E	' Ba	500		
	100	INGEN	Hyrrera Lázaro			13	GERENC	1000		
		REG. CI	P Nº 216087			- JASK	GENE			
			. W					1		
		ned w					a = 1	in		

01 de 01

Jagenieria KAE Jagenieria KAI Jugenieria KAE Jugeni Ingenieria KAE Jugenieria KAE Jugeni

genienia KAE Jagenienia Ingenieria MAE Jugenieria MAE Jugeni

Registro Indecopi Nº 028979-2021/DSD

PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO N°: CC-EPF-IND-01 ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO 01 de 01 **PÁGINA Nº:** GRUESO RETRITURADO EN CANTERA SANTA CECILIA SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR **UBICACIÓN** 25/11/2024 Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash FECHA:

FORMATOS DE ENSAYO DE INDICE DE DURABILIDAD

MTC E 214

Información de Muestra y Ensayo

Cantera Material

ITEM	DESCRIPCIÓN	Lant A	ENSAYOS	Les H
1	Tamaño Maximo (mm)	4.75	4.75	4.75
2	Muestra Nº	7 < 1090	2 0	3- 6
3	Hora de entrada a saturación	13:20	13:22	13:24
4. //	Hora de salida de saturación (mas 10")	13:30	13:32	13:34
5	Hora de entrada a decantación	13:32	13:34	13:36
6	Hora de salida de decantación (mas 20")	13:52	13:54	13:56
7	Altura máxima de material fino	4.50	4.70	4.60
8	Altura máxima de la arena	onta 2.90 tont	3.10	3.00
9	Indice de Durabilidad (%)	65.0	66.0	66.0
10	Promedio (%)		65.7	6 (0.347

		,
∩B¢	EDV	ACION
ODO		ACION

La muestra de agregados fue proporcionada por el solicitante. AE Jugenieria K

genieria KAE Jugenieria K ia NAE Jugenieria NAE Jugenieria genieria NAE Jugenieria NAE Jugenieria NAE mieria KAE Jugenieria AE Jagenieria KAE Jagenieri

enieria NAE Jugenieria Jugenieria KAE Jugenieria KAE Jugenieria KAE KAE Jugemienig ngenieria KAE Jugenier Jugenieria KAE Jugeni nagenieria KAE Jugenieria KAE Jugeni

Registro Indecopi Nº 028979-2021/DSD

MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA PÁGINA Nº: 01 DE 01 CECILIA SOLICITA: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	NAE In	Registro Indecopi N° 028979-202	and enterior	
MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA PÁGINA Nº: 01 DE 01 CECILIA SOLICITA: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	JA W	ME WAL WAL WAL WAL		
CECILIA SOLICITA: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PROYECTO:	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N°:	CC-EPF-AGM-01
SOLICITA: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	- Oal	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	PÁGINA N°:	01 DE 01
	1	CECILIA		
Internal Control of the Control of t	SOLICITA:	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACION: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

ENSAYO DE ANÁLISIS GRANULOMÉTRICO DEL RELLENO MINERAL vieria NAE Jugenieria NA

Datos de Muestra	Mrs.	Peso de Muestra		
Agregado: Cantera:	Fino	Peso Inicial Seco (gr) =	500.00	

	ENSAYO D	E ANÁLI	(ASTM D546, MTC			ELLEN	IO MINERA	L		
vieria vieria	Datos de Mueso Agregado: Cantera:	tra Fino	Peso de Muestra Peso Inicial Seco (gr) =	500.00	a KAN			oria K		ia KP
	KA	E 1007	AE Just	NA	Elag					
	ABERTURA (mm)	TAMIZ	PESO RETENIDO (gr)	RETENIDO PARCIAL%	RETENIDO ACUMULADO %	PASA %	ionia "	inia		:onia
	0.600	N° 30	33.00	6.6	6.6	93.40	D			
	0.300 0.075	N° 50 N° 200	58.00	11.6	18.2	81.80	- E 100			
mia la Kin	0.075	IN 200	30.00	6.0	24.2	75.80		" KIN		
T. Kar		. 1								
ienta : onta			mile					ania 1		
							on all			
			-/ 1				1			
What will be	" Was	- :/			10		1 1 1		, KP	
	LOV P	To long	" Haidia			HGE	NIE			inca
	KAL THE	minial/					1 6 M			
	Viator	Alfonso	Herrera Lázaro ROGNIL Nº 216087			KAE	D CIA			
enia mienia	anile 1	REG. CIP I	V* 216067	30		6	SERENCIA		20	
		0.000				P.C.	- wier			
		6 60-7					Lat. 47 BM-67			

Water Alfonso Harrera Lazaro

Inscenses Cove

Reg City Nº 2 16007 Jagenieria KAE Jageni Ingenieria KAE Jugenieria KAE Jugeni

KAE Jugenieria Registro Indecopi N° 028979-2021/DSD

Jagenieria KAE Jagen DEL C Jugenieria KAE E Jagenieria

PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

ASFÁLTICO EN CALIENTE MODIFICADO CON SET

AGREGADO CRUET KAE Jugenieria

SOLICITADO: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

UBICACIÓN: Distrito: Chimberto -KAE Jugenieria KA UBICACIÓN: Distrito: Chimbote; Provincia: Santa; Departamento: Ancash

FECHA: 25/11/2024

ANTERA: Santa Cecilia ATERIAL: Arena Zarand	eada VIII Jagemen	
Muestra	Piedra Chancada	Norma
Sales Solubles Totales	0.47 %	N.T.P. 339.152.200
Partículas Livianas	0.38 %	N.T.P. 400.023
bservación: <u>La muestra (</u>	de agregados fue proporcio	nada por el solicitante.

genieria KAE Jugenieria KAE Jug

Jugenieria MAE Jugenia MAE Jug genieria KAE Jugenier Me Appoint Marie Marie Lazaro Magania Maria Magania Ma

h KAE Jugenieria K

Registro Indecopi N° 028979-2021/DSD

PROYECTO:	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° :	CC-EPF-ALB-01
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PAGINA N° : _	01 DE 01
	CANTERA SANTA CECILIA		
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	25/11/2024

ENSAYO DE ADHESIVIDAD DE LOS LIGANTES BITUMINOSOS A LOS ARIDOS FINOS ino Ingenieria KA

do	•	E 220 - NLT-355	
	genieus Judenie Informa	ación de Muestra	
Cantera : _ Muestra :	Santa Cecilia Temp. Ag	gua : <u>145 ± 5 °C</u> Agregado: cado 1 hr.	Fino
WAE WAE	Ta Índice de	abla 3 Riedel Weber	gence Jugens 10
	Solución de Ensayo Desplazamiento total con:	Índice de adhesividad Riedel – Weber	ia mieria mie

Índice de Riedel Weber

Muestra : _	200 gr. Secad	lo 1 hr.	
	; 100° _ € 100°	that e for	
	Tabla źwiacza pi		
and the	Índice de Ric	Índice de adhesividad	- What Water
	Solución de Ensayo	Riedel – Weber	wa mia
	Desplazamiento total con:	0	ante de la costa
	Agua destilada	O	1000000 - 10000
	Carbonato sódico.		. 1007
34	M/256	1	
	M/128	2	ania in
	M/64	3	interest in the second
	M/32	4	Dalleton - Out
	M/16	5	
Marie Land	M/8	6	
	M/4	7	200
	M/2	8	into
	M/1	9	Table A reput
KAL "K	Si no hay desplazamiento total con la solución M/1	10	THE MAKE
	and a santa		in the
	El fulliply de adhesividad Bi	Walanda Jawa	
	El indice de adhesividad Rio	edel - Weber de la mezcla es 5	
	NE NE	, ATE TO SHOW I	

	· 1 =		400 60	
· John - nagen	M/1	9	1 aspend	
Sin	o hay desplazamiento total con la solución M/1	10	- N	
med iened	ia inta	Sin Sin	in the	ania .
	El índice de adhesividad Ri	edel - Weber de la mezcla es 5	- diene	
	E 1001	6 1007	104 C 104	
Mar K	KAL I			
OBSERVACIO		and a sould	Rev. H.L.	V.
	La muestra fue proporcionada por el s	olicitante.	Ejec. H.L.	D. MALO
War War	KAL KAL	NAME OF ALL	C WAL	
	200	Ja Ja	(-11)	10
	a second	1 miler	out en iet	
	1049 22 5/19/1	-1000 - 100	SENIER	

nieria KAE Ingenieria KAE AE Jugenieria KAE Jug genieria KAE Jugenierii Viator Alfond Jugenieria KAE Jugenieri

n. aenieria K

Registro Indecopi N° 028979-2021/DSD

KAE Ingenieria Registro Indecopi N° 028979-2021/DSD	
White was a war was a war of the same of t	
PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN REGISTRO I	N°: CC-EPF-ANG-01
CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN PÁGINA I	N°: 01 de 01
CANTERA SANTA CECILIA	
SOLICITA : ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	
UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	IA : 25/11/2024
Value Tille Nille Tille	
ANGULARIDAD (M.T.C. E 205)	

ANGULARIDAD

Información de Muestra y Ensayo

Santa Cecilia Material: Arena Zarandeada Cantera:

ENSAYO	Nº	1	2	3	ANGULARIDAD
Peso del Agregado Fino + Molde	gr.	5635	5675	5652	FÓRMULA:
Peso del Molde	gr.	4169	4169	4169	a replie - and
Peso del Agregado Fino	(w)	1466	1506	1483	W
Volumen del Cilindro	(v)	940	940	940	Gsb x 100
Gravedad Específica de Agregado Fino	G_sb	2.703	2.703	2.703	V X 100
VACÍOS NO COMPACTADOS	%	42.3	40.7	41.6	Mín.30
PROMEDIO	%		41.6	K. Par	KAL KAL
OBSERVACIONES: La muestra de agreç	gados fue pr	oporcionada por el s	olicitante.	rgenierus	
cierca acrieria acque		nevienia		nia nevil	nia Argenieria N
AF Wileria WAL onia W	AE		mia KA	ionia K	A KAE Jude
ugen - Jugenin	11990	1 alent		HOEN	A MARINE

OBSERVACIONES:

et solicitan Water Alfondo Hilfrera Lázaro
Ingeniera Corn.
REG CIF Nº 218087 AE Jugeniaria NAE Jugeniaria NAE Jugeniaria NAE genieria NAE Jugenieria NAE Jugenieria NAE Jugenieria

E Jugenieria KAE Jugenieria KAE Jugenier 1 8º

Registro Indecopi Nº 028979-2021/DSD

PROYECTO:	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : C	C-EPF-VAM-01
- nuger	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PAGINA N° :	01 DE 01
	CANTERA SANTA CECILIA		
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

ENSAYO DE VALOR DE AZUL DE METILENO EN AGREGADOS FINOS Y EN LLENANTES AE Jugenieria KA KAE Jugeno

mid		TO TP 57		Ja
WINE 1	información	n de Muestra		ness.
ionel	Cantera :Santa Cecilia	Agregado	Fino	2
myence	Muestra :10 gr (±0.05 gr)	Vaso volumétrico:	500 cm ³	10
enia maen	Concentración de la solución de Azul de Metileno ml de solución de Azul de Metileno requerida en la t Peso del agregado fino pasante el tamiz N° 200	5 itulación 11 10	mg/ml ml gr.	, ie
mieria	Valor de Azul de Metileno	5.50	gr	A
gen o	agence Ingent Ingente In	gent ougenless	Jugenie Jugenieus 1	M
Krail	Valor de Azul de Metileno (mg/g)	Desempeño Anticipado	a KAE mia KAL	,
gagen	menor o igual a 6 de 7 a 12	Excelente Marginalmente aceptable	a device a review	(A

	E. Jany	C 1007	100 100	
Valor de Az	ul de Metileno	5.50	gr	
			ienia inia	
KAR onia KAR	Valor de Azul de Metileno (mg/g)	Desempeño Anticipado	KAEKAE	- 1
	menor o igual a 6	Excelente	in micros	
	de 7 a 12	Marginalmente aceptable	- angent a new	
	de 13 a 19	Problemas / Poosible falla	1007	
in the sine	mayor o igual a 20	Fallado	When I	
	near ioner.	near entire	inta inta	
	El desempeño antic	ipado es excelente	are a serie	
What is the	Mary Walter			
OBSERVAC		mid unit	Rev. H.L.V.	
	La muestra fue proporcionada por el soli	citante.	Ejec. H.L.D.	
	When War			
ania ani	30	a la la	Lin State	
	willer / Moule	si enem	ionia :	
		adden - adder	a new - ander	

AE Jugenieria KAE genioria KAE Jugenier OBSERVACIONES: Jagenieria KAE Jag

n. nevieria W

AE Jugenieria

ANEXO 4.3. ENSAYOS AL AGREGADO FINO – RESIDUOS DEL AGREGDO GRUESO RETRITURADO

Registro Indecopi N° 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	med	REGISTRO N°: C	C-EPF-DRM-01
- 000	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	Mr.	PÁGINA N°:	01 de 01
111	CANTERA SANTA CECILIA	10	- June C	E WALL
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	Mrs.	N AL	· V
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash		FECHA:	into.

DURABILIDAD AL SULFATO DE SODIO O SULFATO DE MAGNESIO

Información de Muestra y Ensayo

Material

AGREGADO FINO - ANALISIS CUANTITATIVO

AL.	ADO FINO - ANALIS	Peso Requerido	Peso Inicial gr	Peso Final	Perdida de Peso gr	Perdida de Peso %	Gradación Original %	Perdida Corregida %
2/ALCO 3.	/8 a N°4	100	100.0	99.2	0.8	0.80	0.9	0.007
N	°4 a N°8	100	100.0	98.7	1.3	1.30	11.5	0.149
N°	8 a N°16	100	100.0	98.3	1.7	1.70	14.1	0.240
N°′	16 a N°30	100	100.0	97.1	2.9	2.90	36.8	1.067
N°:	30 a N°50	100	100.0	96.8	3.2	3.20	14.4	0.461
N°5	0 a N°100	N. W.		INE	100	VI	10.1	1404
Pas	an N°100	inth	30	100	- with		12.2	30

TOTAL DE DESGASTE

AE Jugenier

OBSERVACIONES: AE Jugenieria

genieria KAE Jugenieria KAE

genieria KAE Jugenieria

ia NAE Jugenieria NAE Jugeni Jugenieria KAE Jugenie Jugenieria NAE Jugeni Jugenieria KAE Jug nieria KAE Ingenieria K Viceor Alfonso Harrera Lázaro INGENIERO CIVIL REG CIP Nº 216087 AE Jugenieria KAE Jugenieria,

Registro Indecopi Nº 028979-2021/DSD

CC-EPF-TAR-01 PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO N°: 01 de 01 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO PÁGINA N°: RETRITURADO EN CANTERA SANTA CECILIA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR UBICACIÓN : Distrito: Chimbote - Provincia: Santa - Departamento: Ancash

ARCILLA EN TERRONES Y PARTICULAS DESMENUZABLES (FRIABLES) EN AGREGADOS

(MTC E212 - ASTM C-142)

Información del Ensayo

Material: Arena Chancada Periodo de inmersión :

Agregado Fino

Tamiz a emplear R		Mín. Requerido Tamiz para remover residuos		Gradación original		Peso final	Perdidas		Terrones y particulas friables corregidas		
_ 1 00	^	(g)	residuos	Original	(g)	(g)	(g)	(%)	(%)		
N°4	N° 16	25	N° 20	1 04	100.00	99.47	0.53	0.53	0.53		
. 1		1. 10	W M	-	M. S.	14	177		0.53		
SERVACIONES									ionia		
	La muestra de a	gregados fue p	proporcionada por el sol	licitante.	WHO PER	- 1					
	ned.		aid.		ania .				mid.		
							UV"				
			ard .	Hond .							
				1-1		- W. F.	1				

OBSERVACIONES:

Jagenieria KAE Jagenieria eria KAE Jugenieria KAE ingenieria KAE Jugenieria KAE Jugeni Jugenieria KAE Jugenieria KAE Jugenieria KAE mieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria

Registro Indecopi Nº 028979-2021/DSD

01 de 01

PÁGINA Nº:

PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO N°: CC-EPF-IND-01

ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO

GRUESO RETRITURADO EN CANTERA SANTA CECILIA

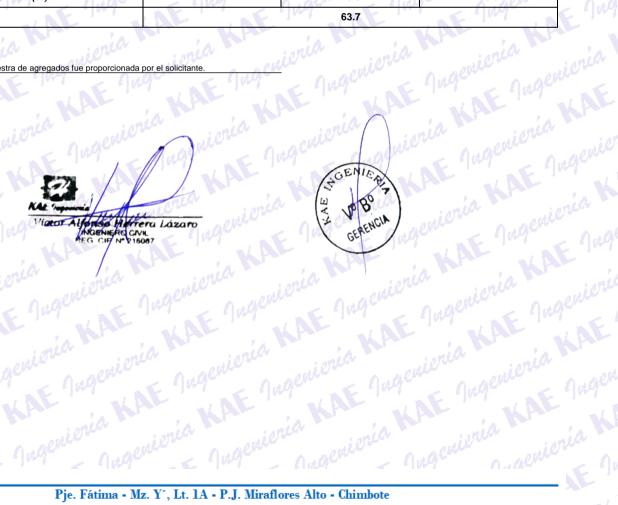
SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

UBICACIÓN 25/11/2024 Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash FECHA:

FORMATOS DE ENSAYO DE INDICE DE DURABILIDAD

MTC E 214

Información de Muestra y Ensayo


ITEM 1	DESCRIPCION Tamaño Maximo (mm)	4.75	ENSAYOS 4.75	4.75
2	Muestra Nº	of - hapen	2	3
3	Hora de entrada a saturación	15:35	15:37	15:3
4	Hora de salida de saturación (mas 10")	15:45	15:47	15:4
5	Hora de entrada a decantación	15:47	15:49	15:5
6	Hora de salida de decantación (mas 20")	16:07	16:09	16:1
7	Altura máxima de material fino	4.60	4.30	4.50
8	Altura máxima de la arena	: 0710 2.80 ionu	3.00	2.70
9	Indice de Durabilidad (%)	61.0	70.0	60.
10	Promedio (%)	NE TE	63.7	1 5 0 0

OBS	ER'	VA	CIO	NES	

AE Jugenieria KA

genieria KAE Jugenieria genieria KAE Jugenieria KAE Jugenieria KAE AE Jugenieria KAE Jugenieria

Jugenieria

nieria KAE Jugenieria K

genieria KAE Jugew

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

ECTO : EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLT	ICO EN	REGISTRO N° :	CC-EPF-RAA-01
CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITUR.	ADO EN	PAGINA N° :	1 DE 1000
CANTERA SANTA CECILIA	1004	F. 1997	100
CITA : ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		W. A.	
ACIÓN: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	: ancor	FECHA:_	25/11/2024
1 10 1000 A 11 C 1000 A 11 1100 A 11 1100	n ed	io-	auth
NSAYO DE DETERMINACION DE LA REACTIVIDAD AGREG	SADO / ALCA	LI (METODO	QUIMICO)
MTC E217 - ASTM C289-94			
Información de Muestra			
WALL WALL WALL			
Santa Cecilia Temp. Agua : 80 °C		34	, Was
Muestra : 25 gr		nia Jugenier	
Muestra : 25 gr			
Cálculo de Silice por el Método Gravimétrico		. 1	
ienter ienter ienter iienter			
Gramos de SiO2 fundido en 100 mL de la solución diluida	10.00	gr.	
Gramos de SiO2 fundido de la solucón en blanco	10.00	gr.	
Mary Mary Mary	1		
Concentración de SiO2 en milimoles por litro en el filtrado original	0.33	milimoles/lt	V To make
Cálculo para determinar reducción de alcalinidad			
WAL WAL	N. A.	TA AL	
Normalidad del HCl usado para la titulación	5.00	12	mid.
Mililitros de solución diluida	20.00	ml add	
Mililitros de HCl usado para obtener el punto final de la fenoltaleina en la muestra por ensayar	5.00	ml	
Mililitros de HCl usado para obtener el punto final		AT P	
de la fenoltaleina del ensayo en blanco	5.00	ml	in.
enter acienti a reputer dienter	and Pro-	ienta	
Reducción en alcalinidad, milimoles por litro	0.10	milimoles/lt	
OBSERVACIONES:		WAL.	AL DE
La muestra fue proporcionada por el solicitante.		Rev. H Ejec. H	I.L.V. I.L.D.
adden a will a related will be	A ROBBLE	ieren	
KAL KAL WAL KAL		O WA	
in the same	What I		W. W.

Viator Alfonso Harrera Lázaro Ingeniero civil REG CIP Nº 216087

a aenieria W

KAE Jugenieria Registro Indecopi N° 028979-2021/DSD

Jagenieria KAE Jagen PEL C E Jugenieria

PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

ASFÁLTICO EN CALIENTE MODIFICADO CON SET

AGREGADO COM AE Jugenieria

KAE Jagen

NAE Jugewieria K

Jugenieria KAE Juge

SOLICITADO: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

UBICACIÓN: Distrito: Nuova Chia AE Jagenieria KA UBICACIÓN: Distrito: Nuevo Chimbote; Provincia: Santa; Departamento: Ancash

FECHA: 25/11/2024

Muestra	Piedra Chancada	Norma
Sales Solubles Totales	0.44 %	N.T.P. 339.152.2002
Partículas Livianas	0.35 %	N.T.P. 400.023
jenierus Jugenieru	Jugenieria Jugenie	- nagerieria - nage
oservación:	le agregados fue proporcio	nada por al calinitanta

mioria NAE Jugenieria Nam

Jados fu Jugenia Jugenia Jugenia Jagenieria KAE Jagenie genieria KAE Jagenier

Wigner Alfords Hittera Lazaro
INGENERO CIVIL
REG CIG Nº 216067

GENIEN

Registro Indecopi Nº 028979-2021/DSD

PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO N°: CC-EPF-RW-01 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO PÁGINA Nº: 01 de 01 EN CANTERA SANTA CECILIA : ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash FECHA: 25/11/2024

ADHESIVIDAD DE LOS LIGANTES RITUMINOSOS A LOS ARIDOS FINOS (PROCEDIMIENTO RIEDEL - WEBER)

MTC E 220 - 2000

REFERENCIA DE LAS MUESTRAS

DENOMINA	CIÓN	DESPRENDIMIENTO ARIDO - ASFALTO	RESULTADOS	ESPECIFICACIONES	near a new
AGUA DESTILADA	0	NULO	. Inc.	1 100	6 0007
M/256	3 1	NULO	W. W.	WALL W	The St. D
M/128	2	NULO	contaa	inter .	Side Wall
M/64	3.014	NULO A	and anieto	a reple	anie de
9 M/32	4	NULO	PARCIAL: 6	Min 4 = Cumple	C 10
M/32 M/16 M/8	5	NULO	TOTAL: 10	Will 4 = Oumpie	4/ 14
M /8	6	NULO	wid.	A Maria	A The same
M/4	7	PARCIAL	ie in the second	near miero	:0200
M/2	8 0	PARCIAL	was alle	- Outlean	a delice
M/1	9	PARCIAL	The state of	AL I	1000
M/1 VACIONES: Cumple con	9 Io mínimo especifica		A 11 1/ 27 T	evieria MAE	rieria KP

OBSERVACIONES:

genieria KAE Jugenieria KAE

ia NAE Jugenieria NAE Jugenieria nieria KAE Jugenieria

Victor Alfonso Harrery Lázaro Ingeniero Civil REG CIFI Nº 216067 AE Jugenieria KAE Jugeni

Jugenieria NAE Jugenieria NAE Jugenieria Jugenieria KAE Jugeni Jugenieria KAE Jugenieria KAE

Registro Indecopi N° 028979-2021/DSD

AE Jugenieria

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N°:_	CC-EPF-ANG-01
	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	PÁGINA N°:_	01 de 01
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

ANGULARIDAD

(M.T.C. E 205)

Información de Muestra y Ensayo

Cantera : Santa Cecilia				Material	: Arena Chancada
ENSAYO	Nº	1	2	3	ANGULARIDAI
Peso del Agregado Fino + Molde	gr.	5653	5661	5671	FÓRMULA:
Peso del Molde	gr.	4169	4169	4169	new ance
Peso del Agregado Fino	(w)	1484	1492	1502	W W
Volumen del Cilindro	(v)	940	940	940	V- — Gsb
Gravedad Específica de Agregado Fino	G _{sb}	2.817	2.817	2.817	x
VACÍOS NO COMPACTADOS	%	44.0	43.7	43.3	Mín.30
PROMEDIO	%	E . Just	43.6	A 6 100	7 - 1000

OBSERVACIONES:

La muestra de agregados fue proporcionada por el solicitante agre
MAL Jagenieria
Valencia Jugenieria KAE

AE Jugenieria KAE Jugenieria AE Jugenia KAE Jugenieria KAE Jugenieria KAE

nia KAE gage mieria NAE Jugenieria Ingeneria KAE Jugenieria KAE Jugenie

ANEXO 4.4. DISEÑO MARSHALL

Registro Indecopi N° 028979-2021/DSD

ia NAE Jugenieria NAE Jugenieri Ingenieria KAE Inger DISEÑO DE MEZCLA ASFALTICA EN CALIENTE LA ASFALTICA E mieria KAE Jagemeria KAE Jagemeria Jagemeria KAE Jagemeria Jagemeria Jagemieria Jagemieria Jagemieria Ingenieria NAE Ingeni

ngenieria KAE Ingenieria KAE In "EVALUACIÓN DE PROPIEDADES FÍSICOMECÁNICAS DEL CONCRETO ASEÁLTICO
CALIFNITE MODERATO MECÁNICAS DEL CONCRETO ASFÁLTICO EN
CALIENTE MODIFICADO CON PERCIPIO CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUFSO PETDITIVIDADO CON RESIDUOS DEL genieria KAE 10 AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILLA" SOLICITAIENIA NA Jagenieria KAE Jagenier

AE Jugenieria KAE Jugenieria KAE Jugenieria SOLICITA EN SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ JOSIAH VINCHALES SALA CLIAN RODRÍGUEZ VÁSQUEZ Jagenieria ngenieria KAE Ingenieria KAE AE Jagenieria KAE Jagenier ia KAE Jugenieria KAE

Jugenieria KAE Jugenieria KAI Jugenieria KAE Jugenieria K **NOVIEMBRE 2024,** AE Jugenieria KAE Jugenieria CHIMBOTE

genieria KAE Jugenieria KA SANTA - ANCASH Jugenieria KAE Jugenie

Jugenieria KAE Jugi

ingeneria KAE Jugenieria KAE Jugenie Ingenioria KAE Jagenieria KAE Jageni Jagenieria KAE Jageni AGREGADO GRUESO PARA ORACIÓN DE LA MEZCLA ASFÁ! ELABORACIÓN DE LA MEZCLA ASFÁLTICA EN CALIENTE Jagenieria KAE Jagenieria ingeneria KAE Jagenieria KAE Jagenie Ingenieria HAE Jugenieria HAE Jugeni

SOLICITA

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi N° 028979-2021/DSD

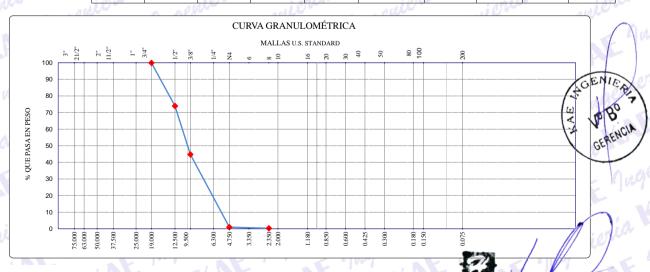
PROYECTO EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN

REGISTRO N°: CC-EPF-GRA-01

CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN

PÁGINA N°: 01 de 01

CANTERA SANTA CECILIA


UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash

FECHA: 25/11/2024

ENSAYO DE ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS

(ASTM C-33, MTC E204, NTP-400-012)

14		M-01	M-02								18.8
	Peso Inicial Seco (gr)	2866.90	3200.20		AGF	REGADO GI	RUESO - CAN	TERA SANT	TA CECIL	IA	
	Peso Lavado y Seco (gr)	2857.80	3191.50						J. 17 1/19		
	ABERTURA (mm)	TAMIZ	CONTENIDO GRUESO M-1 (gr)	CONTENIDO GRUESO M-2 (gr)	RETENIDO PARCIAL M-1 (%)	RETENIDO PARCIAL M-2 (%)	RETENIDO ACUMULADO M-1 (%)	RETENIDO ACUMULADO M-2 (%)	% PASA M-1	% PASA M-2	% PASA (Promedio
1.4	75.00	3"	7.4	60.	.: 4	100	1. 16.		14 1	,II	1/4
	63.00	2 1/2"	:01200		icon	1.4	nich	10%	DON .		0
	50.00	2"	,,,,,	Date		1.05AL	Α.	12 Part		and Da	
	37.50	1 1/2"	1	- 100-1	20	ALL THE	- C 104	7	Das A	D.	6 1
	25.00	1"	0.0	0.0	0.00	0.00	0.00	0.00	100.00	100.00	100.00
	19.00	3/4"	0.0	10.1	0.00	0.32	0.00	0.32	100.00	99.79	99.90
	12.50	1/2"	713.5	862.3	24.89	26.95	24.89	27.26	75.11	72.74	73.93
	9.50	3/8"	838.3	932.4	29.24	29.14	54.13	56.40	45.87	43.60	44.74
	6.30	1/4"	147	JC "	1007	- 1100	·	1 1007		Dalle.	
	4.75	N°04	1288.7	1362.9	44.95	42.59	99.08	98.98	0.92	1.02	0.97
	3.35	N°06	JA V	p.*	. Man		2 10	. 1	1	1.4	100
	2.35	N°08	17.3	23.8	0.60	0.74	99.68	99.73	0.32	0.27	0.29
	2.00	N°10		o the contract	A	enous	nest!	780	1 M	CH	
	1.18	N°16	- 1 00		C 6 192		Day De	C. 1	(TAT	- 0	
	0.85	N°20	C ' '	- AL D		· NY	-100	M	. 1	Alter	no. i
	0.60	N°30		4. 20.		10	7. 8	P1	b.0 <u>0</u>	- 1	
	0.43	N°40	3074	D.	· meller		CARLOW		A T		0.00
	0.30	N°50	Short-		100	A 11.04	(JU)	iev		. will	0-
	0.18	N°80		1 was	. 40	1 104	- Oak	10,00	_ []		4.
	0.15	N°100	, N.C.		1 N		V. 10.	_ / 10	16.		F '!!
1 100	0.08	N°200	V.	7.2	Ren .	. 1		. 10		100.0	1
	i en	FONDO	9.1	8.7		100	1 4 12	JA -		7	
	egge	No.	A 108	Or The Land	il	7.0	- outle		1000		- mile

OBSERVACIONES : La muestra de agregados fue proporcionada por el solicitante.

ingeneria MAE Jagentoria MAE Jagento Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos ingenera MAE Jugenieria MAE Jugenier Ingenioria KAE Jagenieria KAE Jageni genieria KAE Jugenieria KAE Jugenier geniona RAE Jugenionia RAE Jugenioni ia KAE Jugenieria KAE Jagenieria KAE Jageni ingeneria KAE Jagenieria KAE Jagenie Ingenieria MAE Jugenieria MAE Jugeni Ingenieria KAE Jugenieria KAE Jugeni mycawa MAE Jagenieria Pje - Pagenieria MAE Jagenieria MAE

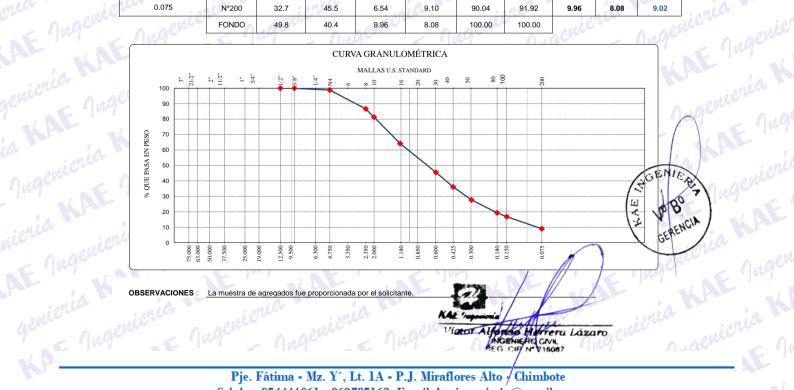
E Jugenier

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

PROYECTO

SOLICITA


UBICACIÓN Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash REGISTRO N°:

ngenieria K

25/11/2024

ENSAYO DE ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS

	Litt	OATO D			C-33, MTC E2	04, NTP-400-0		O AOIL	-0700	,0		
			-/ 133	1								
N. The	14.	M-01	M-02									
	Peso Inicial Seco (gr)	500.00	500.00		AREI	NA CHANC	ADA - CAN	TERA SAN	TA CECIL	.IA		
	Peso Lavado y Seco (gr)	450.20	459.60		. 2010		-					
	ABERTURA (mm)	TAMIZ	CONTENIDO GRUESO M-1 (gr)	CONTENIDO GRUESO M-2 (gr)	RETENIDO PARCIAL M-1 (%)	RETENIDO PARCIAL M-2 (%)	RETENIDO ACUMULADO M- 1 (%)	RETENIDO ACUMULADO M- 2 (%)	% PASA M-1	% PASA M-2	% PASA (Promedio)	
14.	75.00	3"	1. 1	1	in.	100	1. 10	1.0	112	Ren.		
	63.00	2 1/2"	TILLY		Crown	1.45	W.		one		- into	
	50.00	2"	- 1	at Che		101000		- Alle	_		200	
	37.50	1 1/2"	Mr.	100	C 1 14	7	V	Mary 1	c. 1	NA		
William	25.00	1"	100	W. P	12	. 16	1	44.0	15	1	180	
	19.00	3/4"		A ST	1.41	ILA .		1 20		silv.		Mr.
	12.50	1/2"	0.0	0.0	0.00	0.00	0.00	0.00	100.00	100.00	100.00	
	9.50	3/8"	0.0	0.0	0.00	0.00	0.00	0.00	100.00	100.00	100.00	
	6.30	1/4"	WAL B	12	10	- 100 1	-/ 1	S	. 10	E . 11/4	7 _ ,	
aid.	4.75	N°04	5.8	6.3	1.16	1.26	1.16	1.26	98.84	98.74	98.79	
	3.35	N°06		mil	-	3090	N	mill		1.05	100	- in
	2.35	N°08	62.9	58.7	12.58	11.74	13.74	13.00	86.26	87.00	86.63	
	2.00	N°10	25.3	28.4	5.06	5.68	18.80	18.68	81.20	81.32	81.26	
A STATE OF THE PARTY OF THE PAR	1.20	N°16	83.2	87.2	16.64	17.44	35.44	36.12	64.56	63.88	64.22	
	0.60	N°30	101.7	85.6	20.34	17.12	55.78	53.24	44.22	46.76	45.49	
	0.43	N°40	44.9	48.9	8.98	9.78	64.76	63.02	35.24	36.98	36.11	
	0.30	N°50	37.8	46.3	7.56	9.26	72.32	72.28	27.68	27.72	27.70	
	0.18	N°80	46.0	37.6	9.20	7.52	81.52	79.80	18.48	20.20	19.34	
W. W.	0.15	N°100	9.9	15.1	1.98	3.02	83.50	82.82	16.50	17.18	16.84	
	0.075	N°200	32.7	45.5	6.54	9.10	90.04	91.92	9.96	8.08	9.02	
	a reflect	FONDO	49.8	40.4	9.96	8.08	100.00	100.00				
	C [1047	. C '	100	- 1100	0)-	2 6 1	147	1000	No.	-	Eld 4	
				CURV	A GRANULO							
14			t i is	<u>*</u> 4 4	MALLAS U.S. ST	_	08 80	3 g			- 1	,

Jagemierica MA – Jagemierica OBSERVACIONES : La muestra de agregados fue proporcionada por el solicitante

ingeneria MAE Jagentoria MAE Jagento Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos ingenera MAE Jugenieria MAE Jugenier Ingenioria KAE Jagenieria KAE Jageni genieria KAE Jugenieria KAE Jugenier genioria

Jugenioria

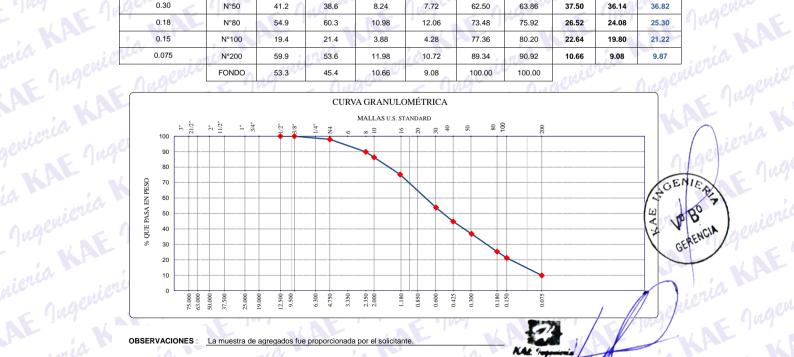
Jugenioria

AGREGADO FINO - ZARANDEADO Jugenioria

Jugen ia KAE Jugenieria KAE Jagenieria KAE Jageni ingeneria KAE Jagenieria KAE Jagenie Ingenieria MAE Jugenieria MAE Jugeni Ingenieria KAE Jugenieria KAE Jugeni mycawa MAE Jagenieria Pje. Fátim-Celul-

Registro Indecopi N° 028979-2021/DSD

REGISTRO N°: PROYECTO SOLICITA E Jugenier 25/11/2024


UBICACIÓN

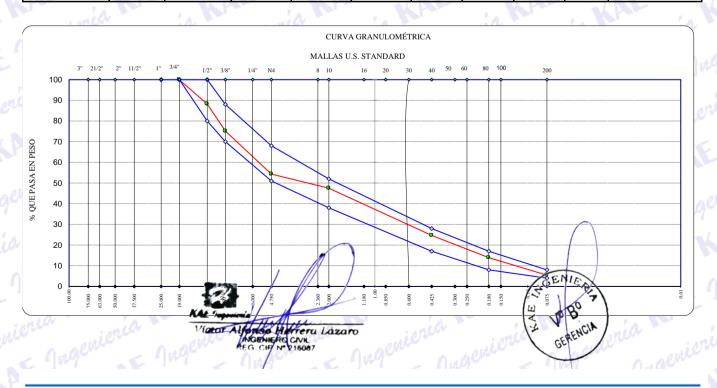
n.aevieria

Viceor Alfonso Harrera Lazaro Ingenera Cava REG CIP Nº 216087

ENSAYO DE ANÁLISIS GRANULOMÉTRICO DE LOS AGREGADOS

	210	J, (1 0 D			C-33, MTC E2	04, NTP-400-0		70710111	-0,100	,,		
			-1 000	1								
14	(A. *	M-01	M-02						-			
	Peso Inicial Seco (gr)	500.00	500.00		,	ARENA ZAF	KANDEADA	- CANTER	Α			
	Peso Lavado y Seco (gr)	446.70	454.60				0.00					
	ABERTURA (mm)	TAMIZ	CONTENIDO GRUESO M-1 (gr)	CONTENIDO GRUESO M-2 (gr)	RETENIDO PARCIAL M-1 (%)	RETENIDO PARCIAL M-2 (%)	RETENIDO ACUMULADO M- 1 (%)	RETENIDO ACUMULADO M- 2 (%)	% PASA M-1	% PASA M-2	% PASA (Promedio)	
1.1	75.00	3"	1 4 8	1	SA.		1. 10	1	1.8	Ren.		
	63.00	2 1/2"	THE COURT		enous	1.45	W.		one		mile	
	50.00	2"	- 1	all Con		1. CALL	-	ALCON.		000	200	
	37.50	1 1/2"	M.	100.1	C 1/4	7	NE.	Mr. I	C 1	ALT	. 5	
W. War	25.00	1"	100	14.1	12	. 16	180	47.8	15.	1	122	
	19.00	3/4"		A ST	1.41	ILA .		1 20		silv.		Mr.
	12.50	1/2"	0.0	0.0	0.00	0.00	0.00	0.00	100.00	100.00	100.00	
	9.50	3/8"	0.0	0.0	0.00	0.00	0.00	0.00	100.00	100.00	100.00	
	6.30	1/4"	4/ 8	7.	. 16	- 100 1	-/ 1	(C)	. 10.1	E .10	7 _ ,	
nid.	4.75	N°04	10.7	9.2	2.14	1.84	2.14	1.84	97.86	98.16	98.01	
	3.35	N°06	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mea	-	3070	<i>P</i>	. mil		1.45	TO -	20
	2.35	N°08	37.5	43.6	7.50	8.72	9.64	10.56	90.36	89.44	89.90	
	2.00	N°10	15.0	20.5	3.00	4.10	12.64	14.66	87.36	85.34	86.35	
A. C.	1.20	N°16	59.2	52.1	11.84	10.42	24.48	25.08	75.52	74.92	75.22	
	0.60	N°30	100.4	113.2	20.08	22.64	44.56	47.72	55.44	52.28	53.86	
	0.43	N°40	48.5	42.1	9.70	8.42	54.26	56.14	45.74	43.86	44.80	
	0.30	N°50	41.2	38.6	8.24	7.72	62.50	63.86	37.50	36.14	36.82	
	0.18	N°80	54.9	60.3	10.98	12.06	73.48	75.92	26.52	24.08	25.30	
William	0.15	N°100	19.4	21.4	3.88	4.28	77.36	80.20	22.64	19.80	21.22	
	0.075	N°200	59.9	53.6	11.98	10.72	89.34	90.92	10.66	9.08	9.87	
	A MERCE	FONDO	53.3	45.4	10.66	9.08	100.00	100.00	mile	100	00	
	C 1 1447	. C '	10-1	- 110	9-	2 11	10-17	_ Aut	A.C.	-	e ago	
				CURV	A GRANULO	OMÉTRICA						
54. W		. 6 . 4	t 5, 5,	£ _	MALLAS U.S. ST	_	20 20	3 g			- W	

SERVAC Jugemierica OBSERVACIONES : La muestra de agregados fue proporcionada por el solicitante


ingeneria KAE Jugenieria KAE Jugenie Ingenieria KAE Jagenieria KAE Jageni MEZCLA TEÓRICA EN PORCENTAJE DE LOS AGREGADOS DE LA MEZCLA ASFÁLTICA EN CALIENTE Jagenieria KAE Jageni ingeneria KAE Jagenieria KAE Jagenie Ingenieria MAE Jugenieria MAE Jugeni

Registro Indecopi Nº 028979-2021/DSD

PROYECTO	:	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N°	CC-EPF-DMA-01
0.4		ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	PÁGINA N°	01 de 01
C 1007		GRUESO RETRITURADO EN CANTERA SANTA CECILIA	C 1 049	- Outlean
SOLICITA		ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN	% :	Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	FECHA	25/11/2024
2.311.50				1717

FORMATO DE ENSAYO ANÁLISIS GRANULOMÉTRICO POR TAMIZADO (MTC E - 204) DISEÑO DE MEZCLA ASFÁLTICA MÉTODO MARSHALL

noie!	Abertura	Piedra	Arena	Arena	into		ione	Especific	caciones	1.0
Tamiz	(mm)	Chancada - Chero	Chancada - Chero	Zarandeada - Chero	ence	Filler	(%)	MAC 2	LO S	Observaciones
% Combinac	iones	45	55	- nD	2	12	100	20	Pie	, KA
3"	75.000			ALL DE		1700	400	100		17200
2 1/2"	63.000	Monda	- 000	100	a seller		A LANGE		000	0.0
2"	50.000	Very	100		1007	15	- John J	10	W.	S 6 1000
1 1/2"	37.500	1		JAN.			. 1	Y		
1"	25.000	100.00	100.00		7.3		7.0	100		1
3/4"	19.000	99.79	100.00	-	LANGE		99.9	100	in the	A 1
1/2"	12.500	73.93	100.00	ad	To.	1207	88.3	80 - 100		QV.
3/8"	9.500	44.74	100.00	Dalle.		10000	75.1	70 - 88		a called
1/4"	6.300	0 007		. 100.1	- 14	4	C 11	3	പിഷ	1
No4	4.750	0.97	98.01	r , 1		/	54.3	51 - 68		- NE
No8	2.360	0.29	89.90				49.6			
No10	2.000	0.00	86.35	LA W		100	47.5	38 - 52		% Agregados
No16	1.180	. addle	75.22	Mr.	iD		41.4			1.4
No20	0.850	7-	- July 1000	Λ.	118		W.C	0.4	Che.	% Grava: 45.7
No30	0.600	1 2 1	53.86	_ C 'I'		8 000	29.6	1 (A)		% Arena: 48.9
No40	0.425	- N.V.	44.80		- AY	1,11	24.6	17 - 28	4 ⁷ 5	% Fino: 5.4
No50	0.300		36.82	N. T.	11 120		20.3	1	120	
No60	0.250	-	ant CV				/ =	14.	100	Observaciones
No80	0.180		25.30	3070		Lie Pour	13.9	8 - 17		30000
No100	0.150	Dade.	21.22	01000	1.48	T-C-	11.7	2	A 10	(Out
No200	0.075	- 100.1	9.87	_ (5 6 00mg	1	5.4	4 - 8	5 49.397	- 000
PASA	WALL DOWN	* IN	X. '	-/	-		1 - 1	. W. W.		- C 1 1007

ingeneria KAE Jugenieria KAE Jugenie Ingenieria KAE Jagenieria KAE Jageni DETERMINCIÓN DEL ÓPTIMO CONTENIDO DE CEMENTO ASFÁLTICO EN LA MEZCI ^ ASFÁLTICA EN CALIENTE Jagenieria KAE Jagenieria ingeneria KAE Jagenieria KAE Jagenie Ingenieria HAE Jugenieria HAE Jugeni

UBICACIÓN:

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi N° 028979-2021/DSD

REGISTRO N° PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO CC-EPF-DMA-01

ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO

PÁGINA N°

01 de 12

GRUESO RETRITURADO EN CANTERA SANTA CECILIA

Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash

ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

FECHA

25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559

PORCENTAJES D	E DISEÑO
Piedra Chancada	45.0%
Arena Chancada	0.0%
Arena Zarandeada	55.0%
a ·	10200
Filler ADM	0.0%
∑ Suma	100.0%
C.A. (PEN)	60-70

1	14.	
Lectura dial	Lectura calibración	Flujo (0,01 mm)
1456.9	1453.51	332
1506.4	1502.91	362
1525.2	1521.68	341

١.	PORCENTAJES DE DISENO		Lectura dial	Lectura	Flujo		
1	Piedra Chancada 45.0%		age	calibración	(0,01 mm)		
100	Arena Chancada 0.0%		1456.9	1453.51	332		
	Arena Zarandeada 55.0%		1506.4	1502.91	362		
	a south south		1525.2	1521.68	341	1.6	
	Filler 0.0%						
	∑ Suma 100.0%						
	C.A. (PEN) 60-70		-		P VP-7	- 12	lan i
•		No.		TO WO		Wis.	- 4/
N°	Número de Probetas	N°	1/4	2	3	4	Promedio
1	% C.A. en peso de la Mezcla	%	4.50	4.50	4.50		fr.
2	%de Piedra chancada en Peso de la Mezcla	%	42.98	42.98	42.98	where	
3	% de Arena Chancada en peso de la Mezcla	%		- 1	- 6	W.	
4	% de Arena Zarandeada en peso de la Mezcla	%	52.53	52.53	52.53		100
5	% de Arena Fina en peso de la Mezcla	%		Lia V		milly "	
6	% de Filler en Peso de la Mezcla	%	- mil	720-	الماروس	7*	will the
7	Peso Especifico Aparente de C.A.	gr/cc.	1.035	1.035	1.035	- 0.00	p por
8	Peso Específico Piedra Chancada-Bullk	gr/cc.	2.762	2.762	2.762	C 1100	
9	Peso Especifico Arena Chancada-Bullk	gr/cc.	- N	1.	2.34		W
10	Peso Especifico Arena Zarandeada-Bullk	gr/cc.	2.721	2.721	2.721		V -
11	Peso Especifico Arena Fina -Bullk	gr/cc.	V -	and or		and to be	
12	Peso Especifico del filler-Aparente	gr/cc.	- Oak	Sec.	لان ا ا		n.40
13	Altura Promedio de la Probeta	cm.	6.40	6.42	6.38		
14	Peso de la briqueta en el Aire	gr.	1218.2	1192.8	1209.3		
15	Peso de la briqueta Saturada	gr.	1226.4	1200.3	1217.8		
16	Peso de la briqueta en el Agua	gr.	737.6	720.1	725.6		
17	Volumen de la briqueta por desplazamiento (15-16)	c.c.	488.8	480.2	492.2		487.1
18	Peso Especifico de la Probeta (14/17)	gr/cc.	2.492	2.484	2.457	15.7	2.478
19	Peso Especifico Máximo (Rice) ASTM D-2041	gr/cc.	2.624	2.624	2.624	1	75
20	Peso Especifico Máximo (Teórico) 100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.550	2.550	2.550	in V	
21	% de Vacios 100*((19-18)/19)	%	5.0	5.3	6.4	100	5.6
22	Peso Especifico Bullk del Agregado Total (2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.739	2.739	2.739	~ 1	No.
23	% V.M.A. Vacios del Agregado Mineral 100-(2+3+4+5+6)*18/22	%	13.1	13.4	14.3	W.	13.6
24	% vacios llenados con C.A. 100*((23-21)/23)	%	61.7	60.1	55.6	Trans.	59.1
25	Peso Especifico Efectivo del Agregado Total (2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.829	2.829	2.829		L
26	C.A. Absorvido por el Peso del Agregado Total (100*7)*((25-22)/(25*22)	%	1.20	1.20	1.20	and the	
27	% de Asfalto Efectivo (1-26)	%	3.30	3.30	3.30	- J	- 100
28	Flujo	cm.	0.33	0.36	0.34	-/ N	0.35
29	Estabilidad sin corregir	1 1	1454	1503	1522	. 101	
30	Factor de Estabilidad	UM	1.09	1.14	1.09	W /	Lia
31	Estabilidad corregida (27*28)	kg.	1584	1713	1659	, n	1652
32	Factor de Rigidez (29/26)	kg/cm.	4772	4732	4864	0000	4788
	Número de Golpes por Capa	1	50	50	50	GENTE	X

OBSERVACIONES:

Viceor Alfonso Herrera Lázaro. INGENIERO CIVIL. REG. CIP Nº 216087

Registro Indecopi N° 028979-2021/DSD

PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N°	CC-EPF-DMA-01
- Oak	ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	PÁGINA N°	02 de 12
100	GRUESO RETRITURADO EN CANTERA SANTA CECILIA	- Indi	
SOLICITA	: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	W W	
UBICACIÓN :	: Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	FECHA	25/11/2024

- Jugenieria KAE Jugenieria KA FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA PAVIMENTOS **AASHTO T 245 / ASTM D 1559** ieria KAE Jugeniero LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS

Componentes:

Componentes: Bitumen Contenido Óptimo Cemento Asfaltico PEN 60/70 (en peso de la mezcla asfáltica total) Rice= 4.50 Identificación muestra Und 01		LABORATORIO DE ME	CÁNICA I	DE SUELOS	S Y PAVIMENTOS
Identificación muestra Und 01 1 Peso del material gr. 1585.0 2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13335.0 4 Peso agua + frasco + material (ensayo) gr. 12731.0 5 Volumen (3-4) gr. 604.0	Bitumen		e la mezcla as	fáltica total)	MAE Jagenierus Ja
1 Peso del material gr. 1585.0 2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13335.0 4 Peso agua + frasco + material (ensayo) gr. 12731.0 5 Volumen (3-4) gr. 604.0	Rice= 4.50				a mienta inta
2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13335.0 4 Peso agua + frasco + material (ensayo) gr. 12731.0 5 Volumen (3-4) gr. 604.0	100	Identificación muestra	Und	01	+ Jugor - nagrence -
3 Peso agua + frasco + material (1+2) gr. 13335.0 4 Peso agua + frasco + material (ensayo) gr. 12731.0 5 Volumen (3-4) gr. 604.0	1 Peso de	el material	gr.	1585.0	NE TO ALL
4 Peso agua + frasco + material (ensayo) gr. 12731.0 5 Volumen (3-4) gr. 604.0	2 Peso ag	gua + frasco	gr.	11750.0	What I've
5 Volumen (3-4) gr. 604.0	3 Peso ag	gua + frasco + material (1+2)	gr.	13335.0	wieren mieren
	4 Peso ag	gua + frasco + material (ensayo)	gr.	12731.0	- Jugen numer
Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.624	5 Volume	en (3-4)	gr.	604.0	A DE TOTAL
KAE Jugenie Jugenierus Jugenierus Jugenierus Jugenierus	Peso	Especifico Maximo MAC, g/cm³	gr./cm3	2.624	The same of the
14.7		Jagean Jageanered	100		agenieron Jagenieron

Tagenieria MAL Jagenieria MAL Jagenieria MAL Jagenieria Ingenieria KAE Jugenieria KAE Jugeni mieria NAE Jugenieria genieria KAE Jugenieria mgeneria MAE Jagenioria MAE Jagenior AF Jugenieria KAF Jugenieria KAF

Registro Indecopi N° 028979-2021/DSD

CC-EPF-DMA-01 REGISTRO N° PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO PÁGINA N° 03 de 12 GRUESO RETRITURADO EN CANTERA SANTA CECILIA SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

UBICACIÓN:

Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash **FECHA** 25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559

		MTC E-504 ASTM
		in the same of the
PORCENTAJES D	E DISEÑO	one william inta
Piedra Chancada	45.0%	- Dubleson a moule
Arena Chancada	1000	- 1 all
Arena Zarandeada	55.0%	A DE MAN
1	. will	12
Filler	0.0%	ioned sienes
∑ Suma	100.0%	reme anderes
C.A. (PEN)	60-70	The state of the s
_ / [4/ 13/2 A

	13.3	
Lectura dial	Lectura calibración	Flujo (0,01 mm)
1366.7	1363.48	378
1325.8	1322.66	375
1252.3	1249.30	368

Piedra Chancada 45.0%		Lectura dial	Lectura calibración	Flujo (0,01 mm)	Cox	
Piedra Chancada 45.0% Arena Chancada Arena Zarandeada 55.0%		1366.7	1363.48	378	- 000	
Arena Zarandeada 55.0%		1325.8		375	1	
A Cita Estandada		1325.8	1322.66 1249.30	368		
Filler 0.0%		1232.3	1249.30	308	14.	
Σ Suma 100.0%						
C.A. (PEN) 60-70						
A DE LA		1	1.00	- 100-1	- 1	
N° Número de Probetas	N°	1	2	3	4	Promedio
1 % C.A. en peso de la Mezcla	%	5.00	5.00	5.00		400
2 %de Piedra chancada en Peso de la Mezcla	%	42.75	42.75	42.75	400	700-
3 % de Arena Chancada en peso de la Mezcla	%	. 6	6 100-7	- 1	WAR.	1
4 % de Arena Zarandeada en peso de la Mezcla	%	52.25	52.25	52.25	-1	M
5 % de Arena Fina en peso de la Mezcla	%	20.	. 10	100	14 8	1
6 % de Filler en Peso de la Mezcla	%		mill "		1250	
7 Peso Especifico Aparente de C.A.	gr/cc.	1.035	1.035	1.035		and or
8 Peso Específico Piedra Chancada-Bullk	gr/cc.	2.762	2.762	2.762	- 1100	100
9 Peso Específico Arena Chancada-Bullk	gr/cc.	1	2.817	_ , 1	N. "	-71
10 Peso Especifico Arena Zarandeada-Bullk	gr/cc.	2.721	2.721	2.721		10
11 Peso Especifico Arena Fina -Bullk	gr/cc.	170000	1.00	A T	1712	QV T
12 Peso Especifico del filler-Aparente	gr/cc.		OBLE		1010	
13 Altura Promedio de la Probeta	cm.	6.70	6.71	6.72		
14 Peso de la briqueta en el Aire	gr.	1238.0	1151.0	1247.9		
15 Peso de la briqueta Saturada	gr.	1240.1	1152.9	1249.2		
16 Peso de la briqueta en el Agua	gr.	742.0	690.0	749.0	1	
17 Volumen de la briqueta por desplazamiento (15-16)	c.c.	498.1	462.9	500.2		487.1
18 Peso Especifico de la Probeta (14/17)	gr/cc.	2.485	2.486	2.495	1 1047	2.489
19 Peso Especifico Máximo (Rice) ASTM D-2041	gr/cc.	2.607	2.607	2.607	pr ,	NK.
20 Peso Especifico Máximo (Teórico) 100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.531	2.531	2.531	. 16	1
21 % de Vacios 100*((19-18)/19)	%	4.6	4.6	4.3	mile -	4.5
22 Peso Especifico Bullk del Agregado Total (2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.739	2.739	2.739	/	1,000
23 % V.M.A. Vacios del Agregado Mineral 100-(2+3+4+5+6)*18/22	%	13.8	13.8	13.5	. 0	13.7
24 % vacios llenados con C.A. 100*((23-21)/23)	%	66.3	66.5	68.2	7	67.0
25 Peso Específico Efectivo del Agregado Total (2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.833	2.833	2.833	6.1	W
26 C.A. Absorvido por el Peso del Agregado Total (100*7)*((25-22)/(25*22)	%	1.25	1.25	1.25	Lock	a -
27 % de Asfalto Efectivo (1-26)	%	3.75	3.75	3.75	- Addler	_
28 Flujo	cm.	0.38	0.38	0.37	7"	0.37
29 Estabilidad sin corregir	100	1363	1323	1249	* #/ D	
30 Factor de Estabilidad	La V	1.04	1.19	1.04		
31 Estabilidad corregida (27*28)	kg.	1418	1574	1299	19	1430
32 Factor de Rigidez (29/26)	kg/cm.	3751	4195	3528		3826
Número de Golpes por Capa	6 195	50	50	50	Day De	

OBSERVACIONES:

Viceor Alfonso Harrera Lázaro INGENIERO CIVIL REG CIF Nº 216087

GERENCIA

Registro Indecopi N° 028979-2021/DSD

	PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO		REGISTRO N°	CC-EPF-DMA-01
nagor	- Oak	ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	a post le	PÁGINA N°	04 de 12
N	The stant	GRUESO RETRITURADO EN CANTERA SANTA CECILIA	ary .		
. 1	SOLICITA	: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR			
UN.	UBICACIÓN :	Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	ant Or	FECHA	25/11/2024

- Jugenieria KAE Jugenieria KA FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA PAVIMENTOS **AASHTO T 245 / ASTM D 1559** ieria NAE Jugeniero LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS

Componentes:

Rice= 5.00

	LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS	
	Componentes: Bitumen Contenido Óptimo Cemento Asfaltico PEN 60/70 (en peso de la mezcla asfáltica total)	
nemieria	Rice 5.00 nia	
	Identificación muestra Und 01	
	1 Peso del material gr. 1590.0	
LOV .	2 Peso agua + frasco gr. 11750.0	
	3 Peso agua + frasco + material (1+2) gr. 13340.0	
	4 Peso agua + frasco + material (ensayo) gr. 12730.0	
	5 Volumen (3-4) gr. 610.0	
	Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.607	
AE Juger	KAE Jagente Ja	1
	oria and and and and and and and and and an	
E Jugen	Viator Alfondo Herrera Lázaro Mognificación REG CIF Nº 216087	ger In

Victor Alfordso the trera Lazaro
Ingeniera Cirl nº 216087 mieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria mgeneria KAE Jagenioria KAE Jagenior AF Jugenieria KAF Jugenieria KAF

UBICACIÓN:

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi N° 028979-2021/DSD

PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO N° CC-EPF-DMA-01

ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO

PÁGINA N° 05 de 12

GRUESO RETRITURADO EN CANTERA SANTA CECILIA

Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash

SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

> **FECHA** 25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559

1. A	
PORCENTAJES DE DISEÑO	: ATLU
Piedra Chancada 45.0%	
Arena Chancada	
Arena Zarandeada 55.0%	
A STATE OF THE STA	11
Filler 0.0%	
∑ Suma 100.0%	
C.A. (PEN) 60-70	

	14.3	
Lectura dial	Lectura calibración	Flujo (0,01 mm)
1196.8	1193.90	399
1389.8	1386.54	418
1125.4	1122.64	371

	Piedra Chancada 45.0% Arena Chancada Arena Zarandeada 55.0%		Lectura dial	Lectura calibración	Flujo (0,01 mm)	Box .	
	Arena Chancada		1196.8	1193.90	399	C 1 W	
	Arena Zarandeada 55.0%		1389.8	1386.54	418	1	
ŧ	a side to the side of the side		1125.4	1122.64	371		
	Filler 0.0%	- card	JAV T	107	CO.		
	Σ Suma 100.0%						
	C.A. (PEN) 60-70						
	WHILE WALL		100	40		41 33	
Ν°	Número de Probetas	N°	1,	2	3	4	Promedic
1	% C.A. en peso de la Mezcla	%	5.50	5.50	5.50		nille
2	%de Piedra chancada en Peso de la Mezcla	%	42.53	42.53	42.53	1000	/
3	% de Arena Chancada en peso de la Mezcla	%	- 4	1100	_ [W.	. 60
4	% de Arena Zarandeada en peso de la Mezcla	%	51.98	51.98	51.98	- 41	77
5	% de Arena Fina en peso de la Mezcla	%	100		1.4	14 7	P1
6	% de Filler en Peso de la Mezcla	%		mille		072500	
7	Peso Especifico Aparente de C.A.	gr/cc.	1.035	1.035	1.035		MALLE!
8	Peso Específico Piedra Chancada-Bullk	gr/cc.	2.762	2.762	2.762	- 100	
9	Peso Especifico Arena Chancada-Bullk	gr/cc.	100	2.017	_ / 1	K.	- 4.7
10	Peso Específico Arena Zarandeada-Bullk	gr/cc.	2.721	2.721	2.721		1 60
11	Peso Especifico Arena Fina -Bullk	gr/cc.	MULL	1.493	Dr.	1.02	QV .
12	Peso Especifico del filler-Aparente	gr/cc.		. 0 W.		1000	
13	Altura Promedio de la Probeta	cm.	6.67	6.66	6.64		
14	Peso de la briqueta en el Aire	gr.	1247.2	1252.7	1250.7		
15	Peso de la briqueta Saturada	gr.	1248.2	1253.9	1251.8		
16	Peso de la briqueta en el Agua	gr.	748.5	751.9	750.7		
17	Volumen de la briqueta por desplazamiento (15-16)	c.c.	499.7	502.0	501.1		500.9
18	Peso Especifico de la Probeta (14/17)	gr/cc.	2.496	2.495	2.496	1 1007	2.496
19	Peso Especifico Máximo (Rice) ASTM D-2041	gr/cc.	2.596	2.596	2.596		N.
20	Peso Específico Máximo (Teórico) 100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.512	2.512	2.512	. 1	1
21	% de Vacios 100*((19-18)/19)	%	3.8	3.9	3.8	mile	3.9
22	Peso Específico Bullk del Agregado Total (2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.739	2.739	2.739		1014
23	% V.M.A. Vacios del Agregado Mineral 100-(2+3+4+5+6)*18/22	%	13.9	13.9	13.9	.6	13.9
24	% vacios llenados con C.A. 100*((23-21)/23)	%	72.3	72.2	72.3	M	72.3
25	Peso Especifico Efectivo del Agregado Total (2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.845	2.845	2.845		W
26	C.A. Absorvido por el Peso del Agregado Total (100*7)*((25-22)/(25*22)	%	1.41	1.41	1.41	Land	a -
27	% de Asfalto Efectivo (1-26)	%	4.09	4.09	4.09	- addle	_
28	Flujo	cm.	0.40	0.42	0.37	7	0.40
29	Estabilidad sin corregir	144	1194	1387	1123	4/ 1	S-
30	Factor de Estabilidad	I'd W	1.04	1.04	1.04		
31	Estabilidad corregida (27*28)	kg.	1242	1442	1168	(SP /	1284
32	Factor de Rigidez (29/26)	kg/cm.	3112	3450	3147		3242
7	Número de Golpes por Capa	1 000	50	50	50	D. Alle	

OBSERVACIONES:

Viceot Alfonso Morrera Lázaro INGENIERO CIVIL REG CIP Nº 216087

GERENCIA

Registro Indecopi N° 028979-2021/DSD

Jugenienia

	PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N°	CC-EPF-DMA-01
	- 000	ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	PÁGINA N°	06 de 12
	The state of	GRUESO RETRITURADO EN CANTERA SANTA CECILIA	- I I I I	
. 16	SOLICITA	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	Was a	
UN TO	UBICACIÓN :	Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA PAVIMENTOS - Jugenieria KAE Jugenieria KA **AASHTO T 245 / ASTM D 1559** ioria NAE Jugeniero LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS

Componentes: Bitumen Contenido Óptimo Cemento Asfaltico PEN 60/70 (en peso de la mezcla asfáltica total) Rice= 5.50 Identificación muestra		LABORATORIO DE IVIL	CANICA I	DE SUELOS	Y PAVIMENTOS	
Identificación muestra	Bitum	en	la mezcla as	ifáltica total)		
1 Peso del material gr. 1586.0 2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13336.0 4 Peso agua + frasco + material (ensayo) gr. 12725.0 5 Volumen (3-4) gr. 611.0 Peso Específico Maximo MAC, g/cm³ gr./cm³ 2.596		100	enia	ieni	r America	ionia K
2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13336.0 4 Peso agua + frasco + material (ensayo) gr. 12725.0 5 Volumen (3-4) gr. 611.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.596	1027	Identificación muestra	Und	01	- Julien Dude	
3 Peso agua + frasco + material (1+2) gr. 13336.0 4 Peso agua + frasco + material (ensayo) gr. 12725.0 5 Volumen (3-4) gr. 611.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.596	1.7	Peso del material	gr.	1586.0	L. Juny	
4 Peso agua + frasco + material (ensayo) gr. 12725.0 5 Volumen (3-4) gr. 611.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.596	2	Peso agua + frasco	gr.	11750.0	14	Maria .
5 Volumen (3-4) gr. 611.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.596	3	Peso agua + frasco + material (1+2)	gr.	13336.0	enter mienter	
Peso Especifico Maximo MAC, g/cm³ gr./cm³ 2.596	_		gr.	6 1 (42-47	~ 1000 - A	
Jegenieria Agenieria	5		-/-19-9	-	LAE THE	
KA CHANGE OF THE REAL PROPERTY	0134	diener mea		109000	mia .	
KA CHANGE OF THE REAL PROPERTY						
KA CHANGE OF THE REAL PROPERTY						
KA CHANGE OF THE REAL PROPERTY		What What	X		WAY WA	
KA CHANGE OF THE REAL PROPERTY					nto I	
KA CHANGE OF THE REAL PROPERTY					1.450	
KA CHANGE OF THE REAL PROPERTY		ion garden agents			O device Date	
		WAE Judenie Judenis			GENIEN	
Marci Alfonso Historia Lázaro Incomiena Com. REG CIF Nº 216087	20	KAE Jagonie Jagoni	2	Jagence		
anienia KA ionia KA ionia KA ionia KA	enia	KAR Superint	2	ia KA	ω R_0	
quieria igria Maria Mari	enia	Viacor Alfondo Historia I	dzaro	ia KAI	ω R_0	
outer jenea jenea jenea jenea jenea	enia E1	WAE "Appendix Harriera L NGENIERO CAVIL REG CIF Nº 216067	Azaro	ia KAI	ω R_0	
	enia E1	Viatar Alfonso Harrera L Mater Alfonso Harrera L Mater Alfonso Harrera L Material Control (1980) REG CIP Nº 216067	Azaro	ia KA	ω R_0	

AE Jugenieria MAE Jugenieria MAE Jugenieria MAE

SOLICITA

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

CC-EPF-DMA-01 REGISTRO N°

ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO

PÁGINA N° 07 de 12

GRUESO RETRITURADO EN CANTERA SANTA CECILIA

ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR

UBICACIÓN: Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash **FECHA** 25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559 KAE Jugenieria

AS I W

	12.3	
Lectura dial	Lectura calibración	Flujo (0,01 mm)
1131.8	1129.03	413
1086.8	1084.11	397
1209.2	1206.28	425

4	Piedra Chancada 45.0%		Lectura dial	Lectura calibración	Flujo (0,01 mm)	Cox	
-	Arena Chancada		1131.8	1129.03	413	- 1 W	
-	Arena Zarandeada 55.0%		1086.8	1084.11	397	M.	
- 1	- 12 N	A Para	1209.2	1206.28	425		
12.6	Filler 0.0%		1203.2	1200.20	423	300	
· -	∑ Suma 100.0%						
H	C.A. (PEN) 60-70						
11	TO THE TAXABLE TO				- 1100-1	- 100	100
N°	Número de Probetas	N°	1	2	3	4	Promedio
1	% C.A. en peso de la Mezcla	, 10795 %	6.00	6.00	6.00		mille "
2	%de Piedra chancada en Peso de la Mezcla	% //	42.30	42.30	42.30	1000	7-5-
3	% de Arena Chancada en peso de la Mezcla	%	. (. FIRM	_ [100	- C
4	% de Arena Zarandeada en peso de la Mezcla	%	51.70	51.70	51.70	-1	W
5	% de Arena Fina en peso de la Mezcla	%	20.	. 1	1	100	P)
6	% de Filler en Peso de la Mezcla	%		mill.		11250	- 40
7	Peso Especifico Aparente de C.A.	gr/cc.	1.035	1.035	1.035	,	and or
8	Peso Específico Piedra Chancada-Bullk	gr/cc.	2.762	2.762	2.762	- 000	0
9	Peso Especifico Arena Chancada-Bullk	gr/cc.	10.0	2.817	/ 18	X	-7.1
10	Peso Especifico Arena Zarandeada-Bullk	gr/cc.	2.721	2.721	2.721		10
11	Peso Especifico Arena Fina -Bullk	gr/cc.	OFFICE		A T	1426	QV T
12	Peso Especifico del filler-Aparente	gr/cc.		adje.		1.000 C	_
13	Altura Promedio de la Probeta	cm.	6.35	6.29	6.37		
14	Peso de la briqueta en el Aire	gr.	1248.9	1243.9	1245.9		
15	Peso de la briqueta Saturada	gr.	1250.4	1245.8	1247.1		
16	Peso de la briqueta en el Agua	gr.	756.4	743.2	746.4		
17	Volumen de la briqueta por desplazamiento (15-16)		494.0	502.6	500.7		499.1
18	Peso Especifico de la Probeta (14/17)	gr/cc.	2.528	2.475	2.488	6 0047	2.497
19	Peso Especifico Máximo (Rice) ASTM D-2041	gr/cc.	2.590	2.590	2.590	-	A.V
20	Peso Especifico Máximo (Teórico) 100/(1/7+2/8+3/9+4/1	0+5/11+6/12) gr/cc.	2.493	2.493	2.493	. 16	
21	% de Vacios 100*((19-18)/19)	%	2.4	4.4	3.9	insta	3.6
22	Peso Especifico Bullk del Agregado Total (2+3+4+5+6)/((2/8+3/	9+4/10+5/11+6/12) gr/cc.	2.739	2.739	2.739	0	1.080
23	% V.M.A. Vacios del Agregado Mineral 100-(2+3+4+5+6)*18/	22 %	13.2	15.1	14.6	- K. !	14.3
24	% vacios llenados con C.A. 100*((23-21)/23)	%	82.1	70.6	73.2		75.3
25	Peso Especifico Efectivo del Agregado Total (2+3+4+5+6)/((100/19	-1/7)) gr/cc.	2.864	2.864	2.864		W
26	C.A. Absorvido por el Peso del Agregado Total (100*7)*((25-22)/(25*2	22) %	1.65	1.65	1.65		2
27	% de Asfalto Efectivo (1-26)	%	4.35	4.35	4.35	. Add Do	_
28	Flujo	cm.	0.41	0.40	0.43	90	0.41
29	Estabilidad sin corregir	1 1 1	1129	1084	1206	* */ N	-
30	Factor de Estabilidad	Louis In It	1.09	1.04	1.04		
31	Estabilidad corregida (27*28)	kg.	1231	1127	1255	US -	1204
32	Factor de Rigidez (29/26)	kg/cm.	2983	2841	2952	n ed	2926
1	Número de Golpes por Capa	100	50	50	50	1000	

OBSERVACIONES:

Viceor Alfonso Harrera Lázaro Magniero Grvi. REG CIG Nº 216067

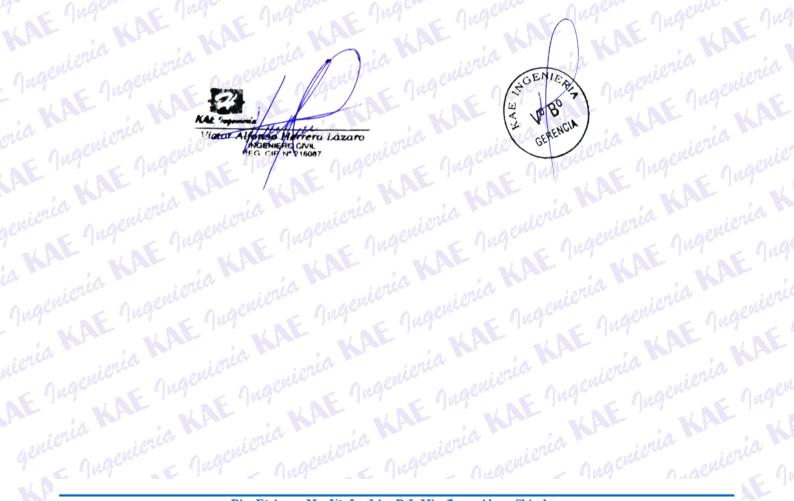
GERENCIA

Registro Indecopi N° 028979-2021/DSD

need	PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N°	CC-EPF-DMA-01
1000	- 0a0	ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	PÁGINA N°	08 de 12
10.16	F. Jan	GRUESO RETRITURADO EN CANTERA SANTA CECILIA	- 100m	E 1009
, Wh	SOLICITA	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	The same	LAL V
COV	UBICACIÓN:	Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA PAVIMENTOS Jugenieria KAE Jugenieria KA **AASHTO T 245 / ASTM D 1559** KAE Jugenieru LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS

Componentes:


Rice= 6.00

Componentes: Bitumen Contenido Óptimo Cemento Asfaltico PEN 60/70 (en peso de la mezcla asfáltica total) Rice= 6.00 Identificación muestra Und 01
Identificaciòn muestra
1 Peso del material gr. 1590.0 2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13340.0 4 Peso agua + frasco + material (ensayo) gr. 12726.0 5 Volumen (3-4) gr. 614.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.590
2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13340.0 4 Peso agua + frasco + material (ensayo) gr. 12726.0 5 Volumen (3-4) gr. 614.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.590
3 Peso agua + frasco + material (1+2) gr. 13340.0 4 Peso agua + frasco + material (ensayo) gr. 12726.0 5 Volumen (3-4) gr. 614.0 Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.590
4 Peso agua + frasco + material (ensayo) gr. 12726.0 5 Volumen (3-4) gr. 614.0 Peso Especifico Maximo MAC, g/cm³ gr./cm³ 2.590
5 Volumen (3-4) gr. 614.0 Peso Especifico Maximo MAC, g/cm³ gr./cm³ 2.590
Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.590
ia KAE Jugenierus Juge
a KAE Jagenie KAE Jagenie Jage

Mat reported

Victor Alfonso Harrera Lazaro

Angenia Reg Cip nº 216067 meria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria

SOLICITA

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

REGISTRO N° CC-EPF-DMA-01 PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO

ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO PÁGINA N° 09 de 12

GRUESO RETRITURADO EN CANTERA SANTA CECILIA

ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash UBICACIÓN: **FECHA** 25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559 genieria KAE Jugenieria

DISEÑO
45.0%
Mary
55.0%
mill
0.0%
100.0%
60-70

	12.3	
Lectura dial	Lectura calibración	Flujo (0,01 mm)
1048.2	1045.59	387
1149.6	1146.79	423
1166.7	1163.86	446

	PORCENTAJES DE DISENO Piedra Chancada 45.0%		Lectura dial	Lectura calibración	Flujo (0,01 mm)	Par	
	Piedra Chancada 45.0% Arena Chancada Arena Zarandeada 55.0%		1048.2	1045.59	387	- 100	
	Arena Zarandeada 55.0%		1149.6	1146.79	423		
i,	14 14 14 14 14 14 14 14 14 14 14 14 14 1		1166.7	1146.79	446		
	Filler 0.0%		1100.7	1103.00	440	1.4	
	∑ Suma 100.0%						
	C.A. (PEN) 60-70						
	The state of the s				- PART	- 100	
N°	Número de Probetas	N°	1	2	3	4	Promedic
1	% C.A. en peso de la Mezcla	%	6.50	6.50	6.50		200
2	%de Piedra chancada en Peso de la Mezcla	% //	42.08	42.08	42.08		70
3	% de Arena Chancada en peso de la Mezcla	%	. 60	6 1/6-7	_ /	THE PERSON	
4	% de Arena Zarandeada en peso de la Mezcla	%	51.43	51.43	51.43	1001	NE
5	% de Arena Fina en peso de la Mezcla	%	12.	. 1		7. 1	1
6	% de Filler en Peso de la Mezcla	%		mill		MILLER	
7	Peso Especifico Aparente de C.A.	gr/cc.	1.035	1.035	1.035	,0 -	100
8	Peso Específico Piedra Chancada-Bullk	gr/cc.	2.762	2.762	2.762	- 0 al	io
9	Peso Especifico Arena Chancada-Bullk	gr/cc.	- 4.	2.017	. 10		-1
10	Peso Especifico Arena Zarandeada-Bullk	gr/cc.	2.721	2.721	2.721	,	. 10
11	Peso Especifico Arena Fina -Bullk	gr/cc.	MUCH	1.00	A.	1,400	gov T
12	Peso Especifico del filler-Aparente	gr/cc.		. nate		MARKET	
13	Altura Promedio de la Probeta	cm.	6.29	6.30	6.32		
14	Peso de la briqueta en el Aire	gr.	1231.1	1244.4	1253.5		
15	Peso de la briqueta Saturada	gr.	1232.3	1245.7	1254.6		
16	Peso de la briqueta en el Agua	gr.	738.7	746.6	752.1		
17	Volumen de la briqueta por desplazamiento (15-16)	c.c.	493.6	499.1	502.5		498.4
18	Peso Especifico de la Probeta (14/17)	gr/cc.	2.494	2.493	2.495	1 1007	2.494
19	Peso Especifico Máximo (Rice) ASTM D-2041	gr/cc.	2.590	2.590	2.590	-	N.
20	Peso Especifico Máximo (Teórico) 100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.474	2.474	2.474	. 1	1
21	% de Vacios 100*((19-18)/19)	%	3.7	3.7	3.7	min.	3.7
22	Peso Especifico Bullk del Agregado Total (2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.739	2.739	2.739	,	11214
23	% V.M.A. Vacios del Agregado Mineral 100-(2+3+4+5+6)*18/22	%	14.9	14.9	14.9	. 6 1	14.9
24	% vacios llenados con C.A. 100*((23-21)/23)	%	75.0	74.9	75.1		75.0
25	Peso Especifico Efectivo del Agregado Total (2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.892	2.892	2.892		W
26	C.A. Absorvido por el Peso del Agregado Total (100*7)*((25-22)/(25*22)	%	2.00	2.00	2.00	Link	a =
27	% de Asfalto Efectivo (1-26)	%	4.50	4.50	4.50	- ABLE TO	_
28	Flujo	cm.	0.39	0.42	0.45	70.	0.42
29	Estabilidad sin corregir	100	1046	1147	1164	4/ 0	
30	Factor de Estabilidad	I a V	1.09	1.04	1.04	" Ro.	
31	Estabilidad corregida (27*28)	kg.	1140	1193	1210		1181
32	Factor de Rigidez (29/26)	kg/cm.	2945	2821	2712		2820
	Número de Golpes por Capa	6 100	50	50	50	DAGO.	_

OBSERVACIONES:

Viceot Alfonso Morrera Lázaro INGENIERO CIVIL REG CIP Nº 216087

Registro Indecopi N° 028979-2021/DSD

PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N°	CC-EPF-DMA-01
- 000	ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	PÁGINA N°	10 de 12
100	GRUESO RETRITURADO EN CANTERA SANTA CECILIA	the shall	
SOLICITA	: ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	N N	
UBICACIÓN	: Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	FECHA	25/11/2024

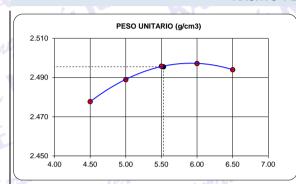
Ingenieria KAE Ingenieria KA FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA PAVIMENTOS **AASHTO T 245 / ASTM D 1559** LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS

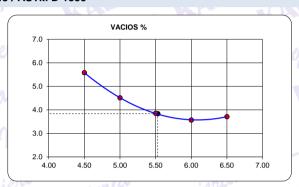
Rice= 6.50

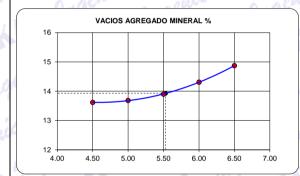
Componentes: Bitumen Contenido Óptimo Cemento Asfaltico PEN 60/70 (en peso de la mezcla asfáltica total) Rice= 6.50 Identificación muestra		LABORATORIO DE MEG	CANICA	DE SUELOS	Y PAVIMENTOS
Identificación muestra Und 01 1 Peso del material gr. 1580.0 2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13330.0 4 Peso agua + frasco + material (ensayo) gr. 12720.0 5 Volumen (3-4) gr. 610.0	Bitum	en	la mezcla as	fáltica total)	water organierous organierous
1 Peso del material gr. 1580.0 2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13330.0 4 Peso agua + frasco + material (ensayo) gr. 12720.0 5 Volumen (3-4) gr. 610.0	Rice=	6.50			a mienca inia
2 Peso agua + frasco gr. 11750.0 3 Peso agua + frasco + material (1+2) gr. 13330.0 4 Peso agua + frasco + material (ensayo) gr. 12720.0 5 Volumen (3-4) gr. 610.0	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Identificaciòn muestra	- Und	01	a Jugent - nugenite - 1
3 Peso agua + frasco + material (1+2) gr. 13330.0 4 Peso agua + frasco + material (ensayo) gr. 12720.0 5 Volumen (3-4) gr. 610.0	1	Peso del material	gr.	1580.0	THE WALL
4 Peso agua + frasco + material (ensayo) gr. 12720.0 5 Volumen (3-4) gr. 610.0	2	Peso agua + frasco	gr.	11750.0	10. 10. 130. 10.
5 Volumen (3-4) gr. 610.0	3	Peso agua + frasco + material (1+2)	gr.	13330.0	enter million i enter
	4	Peso agua + frasco + material (ensayo)	gr.	12720.0	I - Juge - nugering.
Peso Especifico Maximo MAC, g/cm³ gr./cm3 2.590	5	Volumen (3-4)	gr.	610.0	CAL THE WAR
WAE Judenier Anderier Judenier Judenier Judenier Judenier Jude		Peso Especifico Maximo MAC, g/cm³	gr./cm3	2.590	The state of the s
mieria quieria menia mieria mia		E Jugent Jugenia KAE	gage w		nia KAE Jugenee Jugen

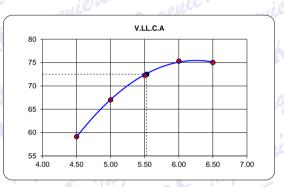
acm3 2.5

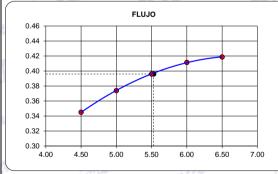
Jugenieria

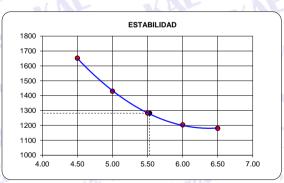

AE Jugenieria

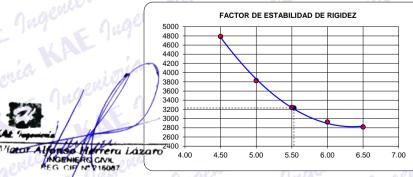

AE Jugenieria MAE Imperior Merrera Lázaro
Ingeniera Corn.
REG CIP Nº 216067 meria NAE Jagenieria NAE Jagenieria Ingenieria KAE Jagenieria KAE Jageni AE Jugenieria KAE Jugenieria KAE Jugenieria KAE genieria KAE Jugenieria KAE Jugenier


Registro Indecopi Nº 028979-2021/DSD


PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO	REGISTRO N°	CC-EPF-DMA-01
A CALLOW	ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO	PÁGINA N°	11 de 12
- 1	GRUESO RETRITURADO EN CANTERA SANTA CECILIA	E 1007	
SOLICITA	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	A. A.	
UBICACIÓN	: Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash	FECHA	25/11/2024


REPRESENTACION GRÁFICA DEL DISEÑO ASFÁLTICO MÉTODO MARSHALL AASHTO T 245 / ASTM D 1559





enia **X**

que evienia

AE Jugenieria KAE Jugenieria

genieria KAE Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi N° 028979-2021/DSD

PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO REGISTRO N° CC-EPF-DMA-01 02 de 12 ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO PÁGINA Nº GRUESO RETRITURADO EN CANTERA SANTA CECILIA SOLICITA ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR UBICACIÓN : **FECHA** 25/11/2024 Distrito: Nvo. Chimbote - Provincia: Santa - Departamento: Ancash

RESUMEN DEL DISEÑO DE MEZCLA ASFÁLTICA MÉTODO MARSHALL **AASHTO T 245 / ASTM D 1559**

		AAS	SHTO T 245	/ ASTM I	D 1559		
	inco inco	العلقاء	rish	innis		ienia.	inia ion
	CUA	DRO RESUME	N CON PORCEN	ITAJE DE C.A			gene - jugeni
	% Cemento Asfáltico en peso	4.50	5.00	5.50	6.00	6.50	WAL JUST
	Peso específico Probeta (g/cm3)	2.478	2.489	2.496	2.497	2.494	near the
	Vacios (%)	5.6	4.5	3.9	3.6	3.7	a william of the
	Vacios Agregado Mineral (%)	13.62	13.68	13.90	14.31	14.87	- cloud
14.	Vacios llenados con C. Asfáltico (%)	59.12	67.02	72.29	75.32	75.03	Was V
	Flujo (cm)	0.35	0.37	0.40	0.41	0.42	wienen : onen
	Estabilidad (Kg)	1652	1430	1284	1204	1181	- Owner - 1
	Factor de rigidez (Kg/cm)	4788	3826	3242	2926	2820	AL WAL
	Estab./Fluencia (Kg/cm)	4788	3826	3242	2926	2820	ania to
	- nater	new.	. An	alian.	A 108	ALD TO	a weller will
	RESULTADOS Y CARACT	ERISTICAS DE	L DISEÑO DE M	EZCLA ASFAI	LTICA	INE	
med	Numero de golpes en cada cara de la probeta	50.00	14.	50.00		20.	" KALL WE
	% Cemento Asfáltico en peso	5.53	%	5.53	%	will	
	Peso unitario Probeta	2.496	g/cm3	2.496	g/cm3	year	
	Vacíos	3.84	%	3.84	%	1	

Numero de golpes en cada cara de la 50.00 50.00	Dadence						awie a service
Drobeta S0.00 S0.53 % S5.53 % S5.53 % S6.53	DE W	RESULTADOS Y CARACT	FERISTICAS DE	L DISEÑO DE ME	ZCLA ASFAL	TICA	I VE JUST SE JUST DE JU
Peso unitario Probeta 2.496 g/cm3 2.496 g/cm3 Vacios 3.84 % 3.84 % Vacios Agregado Mineral 13.93 % 13.93 % Vacíos Ilenados con C. Astáltico 72.50 % 72.50 % Flujo, 0.25 mm 0.40 cm 15.84 mm Estabilidad 1282 kg 12.56 kN Factor de rigidez 3232 kg/cm 3232 kg/cm	: one of		50.00	14	50.00		MAR WALL
Vacios 3.84 % 3.84 % Vacios Agregado Mineral 13.93 % 13.93 % Vacios Ilenados con C. Asfáltico 72.50 % 72.50 % Flujo, 0.25 mm 0.40 cm 15.84 mm Estabilidad 1282 kg 12.56 kN Factor de rigidez 3232 kg/cm 3232 kg/cm	I WELL A ME	% Cemento Asfáltico en peso	5.53	%	5.53	%	iente iente
Vacios Agregado Mineral 13.93 % 13.93 % Vacios Ilenados con C. Asfáltico 72.50 % 72.50 % Flujo, 0.25 mm 0.40 cm 15.84 mm Estabilidad 1282 kg 12.56 kN Factor de rigidez 3232 kg/cm 3232 kg/cm	E 1009	Peso unitario Probeta	2.496	g/cm3	2.496	g/cm3	iger - juge - juge
Vacios Ilenados con C. Asfáltico 72.50 % Flujo, 0.25 mm 0.40 cm 15.84 mm Estabilidad 1282 kg 12.56 kN Factor de rigidez 3232 kg/cm 3232 kg/cm	What is	Vacíos	3.84	%	3.84	%	KAL KAL KA
Flujo, 0.25 mm 0.40 cm 15.84 mm Estabilidad 1282 kg 12.56 kN Factor de rigidez 3232 kg/cm 3232 kg/cm	a wiene	Vacíos Agregado Mineral	13.93	%	13.93	%	nia inia ionia
Estabilidad 1282 kg 12.56 kN Factor de rigidez 3232 kg/cm 3232 kg/cm	E Tuger - 1	Vacíos llenados con C. Asfáltico	72.50	%	72.50	%	angence - angence a new
Factor de rigidez 3232 kg/cm 3232 kg/cm	WAL	Flujo, 0.25 mm	0.40	cm	15.84	mm	E TOTAL STATE OF
magenia in a superioria de la companioria della	and the	Estabilidad	1282	kg	12.56	kN	in the same
agenionia (agenionia) (en) (a) agenionia (agenionia) (en) (en) (en) (en) (en) (en) (en) (e	- Outlean	Factor de rigidez	3232	kg/cm	3232	kg/cm	enteres anderes again
agenienia Jugenienia Jugenienia Jugenienia Jugenienia Jugenienia Jugenienia Jugenienia	AL DEL						and a Judge of Jacob of Jacob
agenience Jugenience Jugenience Jugenience Jugenience Jugenience	Les Ko	A KAN	, KP				WAL WAL
MACENIE ON THE PARTY OF THE PAR				1 000	324		a sienta inia io
KAS Samuel		- nagent	7 91		duge		CENIER
		KAL!	Representation !	4	2		(w) 100 7
Vigeor Alfonso Historera Lázaro Mageniario Covi. REG CIT Nº 216087	mia mia	: one Wat	OF Alfonso	Herrera La	izaro		(S A CHCIA)
MOENIERO CIVIL. REG CIF Nº 216087			MEG. CIE	Nº 216087			GEREN

quaen

Jugenieria KAE

n. aenieria W

ingenera MAE Jugenieria MAE Jugenier Ingenieria KAE Jagenieria KAE Jageni SUSTITUCION DE ARENA CHANCADA EN AREA ARENA ZARANDEADA EL TITUTA DE LA COMPANA DEL COMPANA AREA ARENA ZARANDEADA EL DISEÑO OPTIMO MARSHAI I OPTIMO MARSHALL Jagenieria KAE Jageni ingeneria KAE Jagenieria KAE Jagenie

Ingenieria MAE Jugenieria MAE Jugeni

Registro Indecopi Nº 028979-2021/DSD

AE In	Registro Indecopi N° 028979-202		a granienia
PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°	CC-EPF-COMB-01
Egag	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	PÁGINA N° _	01 DE 01
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559

		MTC E-504 AS	SIM D-
PORCENTAJES DE DIS	EÑO	A RESULT	
Piedra Chancada	45.00%	1 and - Under	
Arena Chancada (15%)	8.25%		
Arena Zarandeada (85%)	46.75%		
∑ Suma	100.0%	nio into	
C.A. (PEN)	60-70	TO STORE OF THE PARTY OF THE PA	

SHALL				
!6	nea	2.480	4	
Lectura dial	Lectura calibración	Flujo (0,01 mm)	1	
1380.0	1346.0	356	C 100	
1360.6	1327.1	351	1	
1451.6	1415.9	379	5.6.1	
1440.4	1405.0	371	1072000	
I also		1.40		

	Arena Chancada (15%) 8.25%	The state of the s		1380.0	1346.0	356	K. 17	
	Arena Zarandeada (85%) 46.75%	When I We		1360.6	1327.1	351		
ú	∑ Suma 100.0%	aid ania	- 37	1451.6	1415.9	379	1.4	
	C.A. (PEN) 60-70	a desille		1440.4	1405.0	371	: Once	
_ 1	C . Just - Under	agen		. I sto	Ψ.	n.all	_	and
	Número de Probetas	D. L.	N°	1	2	3	4	Promedi
1	% C.A. en peso de la Mezcla	N. S.	%	5.53	5.53	5.53	5.53	1
2	%de Piedra chancada en Peso de la Mezcla	and the	%	42.51	42.51	42.51	42.51	14.
3	% de Arena Chancada en peso de la Mezcla	auto a com	%	7.79	7.79	7.79	7.79	Mr.
4	% de Arena Zarandeada en peso de la Mezcla	10 C 104 1	%	44.16	44.16	44.16	44.16	
	% de Arena Fina en peso de la Mezcla		%	L N.C.		1	1 1	N.Y.
	% de Filler en Peso de la Mezcla		%	1 m	70.4	0.0	. 10	-
_	Peso Especifico Aparente de C.A.	: ATOW" . # V	gr/cc.	1.026	1.026	1.026	1.026	
	Peso Específico Piedra Chancada-Bullk	TO THE PARTY OF TH	gr/cc.	2.762	2.762	2.762	2.762	mil.
-	Peso Especifico Arena Chancada-Bullk	1 MP < 1007	gr/cc.	2.797	2.797	2.797	2.797	E/W
	Peso Especifico Arena Zarandeada-Bullk		gr/cc.	2.721	2.721	2.721	2.721	
_	Peso Especifico Arena Fina -Bullk Peso Especifico del filler-Aparente		gr/cc.					
	Altura Promedio de la Probeta		gr/cc.	6.58	6.46	6.45	6.55	
_	Peso de la briqueta en el Aire	A 200" . 10.00	cm.	1247.2	6.46 1248.5	6.45 1242.5	1244.6	
- 4	Peso de la briqueta Saturada	- C 1 104	gr. gr.	1247.2	1249.8	1242.5	1244.6	
	Peso de la briqueta en el Agua	AL WALL	gr.	745.1	747.6	740.3	743.8	-
	Volumen de la briqueta por desplazamiento	(15-16)	c.c.	503.1	502.2	503.3	501.8	502.6
_	Peso Especifico de la Probeta	(14/17)	gr/cc.	2.479	2.486	2.469	2.480	2.479
	Peso Especifico Máximo (Rice) ASTM D-2041		gr/cc.	2.581	2.581	2.581	2.581	
_	Peso Especifico Máximo (Teórico)	100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.513	2.513	2.513	2.513	
21	% de Vacios	100*((19-18)/19)	%	3.9	3.7	4.3	3.9	4.0
22	Peso Especifico Bullk del Agregado Total	(2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.745	2.745	2.745	2.745	
23	% V.M.A. Vacios del Agregado Mineral	100-(2+3+4+5+6)*18/22	%	14.7	14.5	15.1	14.7	14.7
24	% vacios llenados con C.A.	100*((23-21)/23)	%	73.2	74.6	71.2	73.4	73.1
25	Peso Especifico Efectivo del Agregado Total	(2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.832	2.832	2.832	2.832	
26	C.A. Absorvido por el Peso del Agregado Total	(100*7)*((25-22)/(25*22)	%	1.14	1.14	1.14	1.14	
27	% de Asfalto Efectivo	(1-26)	%	4.39	4.39	4.39	4.39	4. 10
28	Flujo	TO THE PARTY OF	cm.	0.36	0.35	0.38	0.37	0.36
29	Estabilidad sin corregir	- C 1047 - 000)		1346	1327	1416	1405	
30	Factor de Estabilidad	LAL NE	-1	1.04	1.04	1.04	1.04	
	Estabilidad corregida	(27*28)	kg.	1400	1380	1473	1461	1428
	Factor de Rigidez	(29/26)	kg/cm.	3932	3932	3881	3938	3921
4	Número de Golpes por Capa	and the second		50	50	50	50	Jerso.
		19 C 100/			ENIE	Ţ		
	OBSERVACIONES:		4	3	GENIER			
	a gagenieria Jugenis	7-7	1.5	KAE	00		100	

A Jugenie

Viceot Alfonso Harrera Lázaro Ingenica civil REG CIP Nº 216087

n. aenieria W

Registro Indecopi N° 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°	CC-EPF-PETM-01
- 104	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PÁGINA N°	01 DE 01
	CANTERA SANTA CECILIA	AL.	C TOUT
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		Ar A
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA **PAVIMENTOS**

AASHTO T 245 / ASTM D 1559 LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS KAE Jugenieria KAE

Componentes:

Rice= 5.53	mia HAL A HAE	nia KA	KAE	MAE
Ident	tificaciòn muestra	Und	01 01	
15	Peso del material	gr.	1582.0	
2	Peso agua + frasco	gr.	11739.0	W. W.
3	Peso agua + frasco + material	gr.	13321.0	
4	Peso agua + frasco + material (ensayo)	gr.	12708.0	
5	Volumen	gr.	613.0	
Peso	Específico Máximo MAC, g/cm³	gr./cm3	2.581	When I'v
RVACIONES :	E Jugenie Jugenierus	Judenie	gagenieru	
A K	KAL JA KAL	KA	12 KA	WAL

ia NAE Ingenieria NAE Ingenieria KAE Jagenieria Jugenieria KAE Jugenie Viator Alfonso Merrera Lázaro Inschieño Cava.
REG CHI Nº 216087 Jugenieria WAE Jugeni AE Jagenieria KAE Jagenier genieria KAE Jugenieria KAE

Registro Indecopi Nº 028979-2021/DSD

AE In	Registro Indecopi N° 028979-202		a genieria
PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°	CC-EPF-COMB-02
Egag	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	PÁGINA N°_	01 DE 01
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA_	25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559

		MTC E-504	ASTM D-1
PORCENTAJES DE DIS	EÑO	A RESIDE	
Piedra Chancada	45.00%	1000 000	
Arena Chancada (25%)	13.75%		
Arena Zarandeada (75%)	41.25%		
∑ Suma	100.0%	ned with	
C.A. (PEN)	60-70	The state of the s	
- 610027		TI STORY	

SHALL				
	ntO -		4 88	
Lectura dial	Lectura calibración	Flujo (0,01 mm)	- 0a0	
1403.2	1368.7	448	L Jan	
1411.5	1376.8	458		
1403.3	1368.8	442	130.1	
1422.7	1387.7	461	1072000	
a side		n. All	J	
				147 1

	.: 079-	- metsey	100000			MESSY		1	
1	PORCENTAJES DE DISE	ΞÑΟ	in new mil	/BOT	Lectura dial	Lectura	Flujo		
p M	Piedra Chancada	45.00%	1 and - Under	- E1	Lectura diai	calibración	(0,01 mm)	- 100	
	Arena Chancada (25%)	13.75%	La Maria	W.	1403.2	1368.7	448	K "	
1	Arena Zarandeada (75%)	41.25%	I. Was In	A. C.	1411.5	1376.8	458		
16 00	∑ Suma	100.0%	ned some		1403.3	1368.8	442	I in	
	C.A. (PEN)	60-70	a result	- de	1422.7	1387.7	461	: One	
. 5	1 1 1 1	all the	S Just - Oall	Pour J		1	D. All		Dall
Nú	úmero de Probetas	14	Mr. W.	N°	J 1	2	3	4	Promedic
1 % (C.A. en peso de la Mezcla	LA W	N. M.	%	5.53	5.53	5.53	5.53	1
2 %d	de Piedra chancada en Peso de la	ı Mezcla	and institu	<i>%</i>	42.51	42.51	42.51	42.51	I'AL Y
3 % d	de Arena Chancada en peso de la	a Mezcla	and the same	%	12.99	12.99	12.99	12.99	Mrs.
4 % d	de Arena Zarandeada en peso de	la Mezcla	E 104	%	38.97	38.97	38.97	38.97	
5 % d	de Arena Fina en peso de la Mezo	cla	TAL AL	%	NE		C 'I'	100	N.
6 % d	de Filler en Peso de la Mezcla			%	11.0	70.1	0.0	. 16	
7 Pes	eso Especifico Aparente de C.A.			gr/cc.	1.026	1.026	1.026	1.026	
8 Pes	eso Específico Piedra Chancada-B	3ullk	and During	gr/cc.	2.762	2.762	2.762	2.762	300
9 Pes	eso Especifico Arena Chancada-Bu	ullk	Caller & Call	gr/cc.	2.797	2.797	2.797	2.797	em-
10 Pes	eso Especifico Arena Zarandeada-	₄ -Bullk	-/ 1	gr/cc.	2.721	2.721	2.721	2.721	
11 Pes	eso Especifico Arena Fina -Bullk	VIA.	1. 10.	gr/cc.					W
12 Pes	eso Especifico del filler-Aparente		: ATLEW	gr/cc.					A -
13 Altu	tura Promedio de la Probeta	a nel	ALCO COLORED TO THE PARTY OF TH	cm.	6.51	6.62	6.58	6.43	
14 Pes	eso de la briqueta en el Aire	1 1004	- 00000 - 11	gr.	1244.3	1248.1	1243.4	1248.1	
15 Pes	eso de la briqueta Saturada		AK WALL	gr.	1245.3	1249.0	1244.7	1249.2	
16 Pes	eso de la briqueta en el Agua	. 16		gr.	747.3	754.6	741.3	752.1	
17 Vol	olumen de la briqueta por desplaza	amiento	(15-16)	c.c.	498.0	494.4	503.4	497.1	498.2
18 Pes	eso Especifico de la Probeta	-	(14/17)	gr/cc.	2.499	2.524	2.470	2.511	2.501
19 Pes	eso Especifico Máximo (Rice) ASTI	M D-2041	and a complete	gr/cc.	2.601	2.601	2.601	2.601	
20 Pes	eso Especifico Máximo (Teórico)		100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.516	2.516	2.516	2.516	C !
21 % d	de Vacios	All Company	100*((19-18)/19)	%	3.9	2.9	5.0	3.5	3.85
22 Pes	eso Especifico Bullk del Agregado	Total	(2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.750	2.750	2.750	2.750	
23 % V	V.M.A. Vacios del Agregado Miner	ral	100-(2+3+4+5+6)*18/22	%	14.2	13.3	15.1	13.7	14.1
24 % v	vacios llenados con C.A.		100*((23-21)/23)	%	72.2	77.8	66.7	74.7	72.9
25 Pes	eso Especifico Efectivo del Agregad	ıdo Total	(2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.858	2.858	2.858	2.858	
26 C.A	A. Absorvido por el Peso del Agreç	gado Total	(100*7)*((25-22)/(25*22)	%	1.41	1.41	1.41	1.41	
27 % d	de Asfalto Efectivo	2V	(1-26)	%	4.12	4.12	4.12	4.12	1 10
28 Fluj	ujo A ALSAV	acd	LO TO THE STATE OF	cm.	0.45	0.46	0.44	0.46	0.45
29 Esta	stabilidad sin corregir	Nago.	< 1007 - OU	ALL TO	1369	1377	1369	1388	
30 Fac	actor de Estabilidad	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7	1.04	1.09	1.04	1.04	
31 Esta	stabilidad corregida	F 4 7	(27*28)	kg.	1423	1501	1424	1443	1448
32 Fac	actor de Rigidez	: one	(29/26)	kg/cm.	3179	3277	3221	3131	3202
NIG	úmero de Golpes por Capa	A CONTRACTOR OF THE PARTY OF TH	.100	-	50	50	50	50	1 11200

OBSERVACIONES:

KA- Jugenien

Viceor Alfonso Harrera Lázaro INGENIERO CIVIL REG CIP Nº 216007

n. aerieria K

Registro Indecopi N° 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°	CC-EPF-PETM-02
- 104	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PÁGINA N°	01 DE 01
	CANTERA SANTA CECILIA	AL.	1000
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	. 1	AL V
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA **PAVIMENTOS**

AASHTO T 245 / ASTM D 1559 LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS KAE Jugenieria KAE

Componentes:

Component	es: KAL	KAL		KAL	
Bitumen	time Contain Artitice DEN CO/70 / Annual de la		n andil		
Contenido Op	timo Cemento Asfáltico PEN 60/70 (en peso de la	mezcia astaitica t	otal)		
Rice= 5.53	KAL KAL				
ionea	ierea inia	mia -	mia		Sid F
Identi	ficaciòn muestra	Und	01		
1,	Peso del material	gr.	1532.0		
2	Peso agua + frasco	gr.	11685.0	KAL !	
3	Peso agua + frasco + material	gr.	13217.0		
4	Peso agua + frasco + material (ensayo)	gr.	12628.0		
5	Volumen	gr.	589.0		
Peso	Específico Máximo MAC, g/cm³	gr./cm3	2.601	N. Maria	10
BSERVACIONES :	1007	- 1007	- 1009-		
Ja Ko	When I Was	. K. P.	1. 16		
				ania	
	- Jugen - Dullen			May - Oast	
	LAE NE M		1007	-INE TOWN	
anta.	P=>	1	HOEN	IEA	
			120	7	

Registro Indecopi Nº 028979-2021/DSD

, W	Trestacion de Servicios Genera	ites	
AE In	genieria Registro Indecopi Nº 028979-2021	I/DSD	a newienia
PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°	CC-EPF-COMB-03
E 104	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	PÁGINA N° _	01 DE 01
SOLICITA	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR		
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO MARSHALL

MTC E-504 ASTM D-1559

MTC E-504 ASTM D-
Klyn Klyn
100

SHALL				
1.4	nille -		4 88	
Lectura dial	Lectura calibración	Flujo (0,01 mm)	- Oak	
1493.1	1456.4	513	100	
1535.3	1497.6	538	1	
1499.2	1462.4	499	14.	
1482.8	1446.4	486	i one	
L value		1.40	-	
		D 1/L/-7		- 100

1000	- mt.04	i often	10 T		MESSAY		1	
PORCENTAJES	S DE DISEÑO	a new	· .	Lectura dial	Lectura	Flujo		
Piedra Chancad	ada 45.00%	I and I was	< 111	477	calibración	(0,01 mm)	- 8 00	
Arena Chancada (3	(35%) 19.25%	I WE WELL	V.	1493.1	1456.4	513	K '	
Arena Zarandeada (a (65%) 35.75%	I What I was	7	1535.3	1497.6	538		
∑ Suma	100.0%	ned : onlar	il	1499.2	1462.4	499	30	
C.A. (PEN)	60-70	a went	all of	1482.8	1446.4	486	10000	
C . Jan	- 1000	- C PUT - ANDE	4	1 10		0.40	July 1	Dall!
Número de Probetas	<u> </u>	AL AL	N°	1	2	3	4	Promedic
1 % C.A. en peso de la Mezo	zcla	What is	%	5.53	5.53	5.53	5.53	-
2 %de Piedra chancada en I	Peso de la Mezcla	mile jancov	%	42.51	42.51	42.51	42.51	Lin Y
3 % de Arena Chancada en	n peso de la Mezcla	- ALLEN - ALLEN	%	18.19	18.19	18.19	18.19	Bra-
4 % de Arena Zarandeada e	en peso de la Mezcla	10 5 100 D	%	33.77	33.77	33.77	33.77	
5 % de Arena Fina en peso	de la Mezcla	AL ALL	%	NE	4	V 11	1971	18
6 % de Filler en Peso de la N	Mezcla		%	1	10.	0.0	. W	4
7 Peso Especifico Aparente	∂ de C.A.		gr/cc.	1.026	1.026	1.026	1.026	
8 Peso Específico Piedra Ch	;hancada-Bullk	and the same	gr/cc.	2.762	2.762	2.762	2.762	107
9 Peso Especifico Arena Ch	hancada-Bullk	and a lay	gr/cc.	2.797	2.797	2.797	2.797	en-
10 Peso Especifico Arena Za	arandeada-Bullk	- ALL	gr/cc.	2.721	2.721	2.721	2.721	. 1
11 Peso Especifico Arena Fir	ina -Bullk	The state of the s	gr/cc.			<u> </u>		W
12 Peso Especifico del filler-A	Aparente	: one	gr/cc.	,				0
13 Altura Promedio de la Prob	obeta	ACC SOLOW	cm.	6.25	6.54	6.27	6.36	
Peso de la briqueta en el A	Aire	- 1000 - 100	gr.	1246.0	1244.0	1250.0	1249.0	
Peso de la briqueta Satura	rada	AT WALL	gr.	1247.3	1245.5	1251.4	1250.2	
Peso de la briqueta en el A	Agua	The state of the s	gr.	751.0	747.0	755.0	753.0	
Volumen de la briqueta po	or desplazamiento	(15-16)	c.c.	496.3	498.5	496.4	497.2	497.1
18 Peso Especifico de la Prob	obeta	(14/17)	gr/cc.	2.511	2.495	2.518	2.512	2.509
19 Peso Especifico Máximo (I	(Rice) ASTM D-2041	May - Outher -	gr/cc.	2.605	2.605	2.605	2.605	
Peso Especifico Máximo ((Teórico)	100/(1/7+2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.519	2.519	2.519	2.519	· C
21 % de Vacios		100*((19-18)/19)	%	3.6	4.2	3.3	3.6	3.68
Peso Especifico Bullk del /	Agregado Total	(2+3+4+5+6)/((2/8+3/9+4/10+5/11+6/12)	gr/cc.	2.754	2.754	2.754	2.754	
23 % V.M.A. Vacios del Agreç	egado Mineral	100-(2+3+4+5+6)*18/22	%	13.9	14.4	13.6	13.8	13.9
24 % vacios llenados con C.A	.A.	100*((23-21)/23)	%	73.9	70.8	75.5	74.2	73.6
Peso Especifico Efectivo d	del Agregado Total	(2+3+4+5+6)/((100/19 -1/7))	gr/cc.	2.863	2.863	2.863	2.863	
26 C.A. Absorvido por el Peso	so del Agregado Total	(100*7)*((25-22)/(25*22)	%	1.42	1.42	1.42	1.42	
% de Asfalto Efectivo	: 012000	(1-26)	%	4.11	4.11	4.11	4.11	1 12
28 Flujo	pe-	LOW TO MAKE	cm.	0.51	0.54	0.50	0.49	0.51
29 Estabilidad sin corregir	- 1000	E POUT - DOLL	P-	1456	1498	1462	1446	
80 Factor de Estabilidad	WE .	-/ NV XV 100 /	_, 7	1.04	1.04	1.04	1.04	
B1 Estabilidad corregida	The state of	(27*28)	kg.	1515	1558	1521	1504	1524
32 Factor de Rigidez	: 012	(29/26)	kg/cm.	2953	2895	3048	3095	2995
Número de Golpes por Ca	'ana	J 2) 600		50	50	50	50	111200

OBSERVACIONES:

KP- Jugenier

Herrera Lázaro RG CIVIL Nº 216087

Pje. Fátima - Mz/. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Registro Indecopi N° 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°	CC-EPF-PETM-03
- 104	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PÁGINA N°	01 DE 01
	CANTERA SANTA CECILIA	AL.	1007
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	. 1	A. A.
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA _	25/11/2024

FORMATO DE ENSAYO PESO ESPECÍFICO TEÓRICO MÁXIMO DE MEZCLAS ASFÁLTICAS PARA **PAVIMENTOS**

AASHTO T 245 / ASTM D 1559 LABORATORIO DE MECÁNICA DE SUELOS Y PAVIMENTOS

Componentes:

	LABORATORIO DE MECÁNIC	A DE SUELC	OS Y PAVIMENTOS	
Bitumer	onentes: n do Óptimo Cemento Asfáltico PEN 60/70 (en peso de la	a mezcla asfáltica t	total)	nieria
Rice= 5	i.53	onia .	mia KAE inia KAE inia K	
- nagerico - 1	dentificaciòn muestra	Und	of of general and and	
E WAE	1 Peso del material	gr.	1546.0	
contact to	2 Peso agua + frasco	gr.	11748.0	
really mailting	3 Peso agua + frasco + material	gr.	13294.0	
- Clayer	4 Peso agua + frasco + material (ensayo)	gr.	12700.5	
KAL KA	5 Volumen	gr.	593.5	
ionia E	Peso Específico Máximo MAC, g/cm³	gr./cm3	2.605	100
OBSERVACIONES :				
mia KAL i onia	ania KAL ania KAL	Lia KA	mia KAE A KAE mia	
DE Jugeron Ja	genie Jugenie Jugenie		enter organieros pagenieros	
micria Kanier	ia Kalia Kalia	onia	HOENIE	mea K

ia NAE Jugenieria NAE Jugenieria Jagenieria KAE Jageni MAE Impriorie

Viacot Alfonso Harrera Lázaro
Incented CIVI.
REG CIVI Nº 216067 AE Jagenieria KAE Jagenier genieria KAE Jugenieria KAE

ANEXO 4.5. ENSAYOS AL CONCRETO ASFALTICO EN CALIENTE

Registro Indecopi Nº 028979-2021/DSD

E Inge	Registro Indecopi N° 028979-2021	agenienia	remieria 10
ROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : (CC-EPF-PVA-06
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	E Jugar	Juden
DLICITA : BICACIÓN :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	PAGINA N° : FECHA :	01 DE 01 27/11/2024

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS KAE Jugenieria KA

medi		MTC E 505 - ASTM 3203				
		Información de Muestra				
ionia	Elaboración: Laboratorio	ionia nic	%C.A	5.53%	KAL	"ia
	Muestra: Sustitución 15% Arena Cha	ncada Maria Ma				
onia	Peso Específico Bulk	a King ania	2.745	gr/cm3	, KA	
	Peso específico teórico máximo		2.581	gr/cm3		
E. W.	Porcentaje de vacíos		4.00	%		
	OBSERVACIONES: La muestra fue prop	orcionada por el solicitante.	mieria	Rev. Ejec.	H.L.V. H.L.D.	
KAE	KAE WAE					
		aguieria a genie	nia mieni		eria mie	nia
	MAE	A STAN	E Jago			
	ionia agionia agi	nig Lionia	ENIE	ionia	nieria .	
	KAE Impunis	1.000	TOENIER			

AE Jagenieria NAE genieria KAE Jugenieria Vicer Alfondo Herrera Lázaro
INGENIERO CIVIL
REG. CIFI Nº 216087 At Ingenieria WAL Jugenieria WAL Jugenieria W

Registro Indecopi Nº 028979-2021/DSD

AE Jugenieria

PROYECTO:	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : CC-EPF-PVA-07	
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	- Outlette a new	
	CANTERA SANTA CECILIA	E TOUR	
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : 01 DE 01	
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	FECHA: 27/11/2024	- with

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS AE Jugenieria KA

Información de Muestra	
Elaboración: Laboratorio %C.A. 5.53%	- ia
Muestra: Sustitución 25% Arena Chancada	
Peso Específico Bulk 2.750 gr/cm3	
Peso específico teórico máximo 2.601 gr/cm3	
Porcentaje de vacíos 3.85 %	
OBSERVACIONES: Rev. H.L.V. La muestra fue proporcionada por el solicitante. Ejec. H.L.D.	nia NA
KAR wieria KAR wieria KAR wieria KAR wieria KAR wieria K	AL
- Judent Judente Judente Judente Judente Judente Judente Judente	

AE Jagenieria NAE Jagenieria NA Vicant Alfonso Hittera Lázaro
ANGENIGANA CHI Nº 218087 Ingenieria KAE Jugenieria KAE Jugeni mieria KAE Jagenieria KAE Jagenieria KAE Jagenieria mgeneria KAE Jagenieria KAE Jagenier AE Jugeniaria KAE Jugenieria KAE Jugenieria KAE

Registro Indecopi Nº 028979-2021/DSD

IE Inge	Registro Indecopi N° 028979-2021	DSD was and	enionia 10
ROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : _C	C-EPF-PVA-08
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	E Jugan	Jugen
DLICITA : BICACIÓN :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	PAGINA N° : FECHA :	01 DE 01 27/11/2024

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS AE Jugenieria KA

ionia		MTC E 505 - ASTM 3203	S		
		Información de Muestra	Judenie Jac		
ienia	Elaboración: Laboratorio	A ienia Kara	%C.A.	5.53%	KALimia
	Muestra: Sustitución 35% Arena Cha	ncada nagement			
eria nomie	Peso Específico Bulk Peso específico teórico máximo	a Karieria	2.754 2.605	gr/cm3 gr/cm3	nia KAL
E Jugo	Porcentaje de vacíos	E Jude Jude	3.68] %	
	OBSERVACIONES: La muestra fue prop	porcionada por el solicitante.	agenieria 1	Rev. H.L.\ Ejec. H.L.C	inevieria Oug
KAL wiene	a KAL mia KAL ionia	KALKAL	onia KAL		AKAL
		ugenie Jugeni	= 1009		
enia naeu	ienia mi 253 / hour	hia mienia	HOENIER	ieria KA	cieria Kiria
	Mator Alfonso Harre	ru Lázaro VAE	(BO BO		

Jagenieria MAE Jagenieria Jugenwa MAE Jugenw genieria KAE Jugenie Mienia KAE Jagenieria KAE Jagenieria At Ingenieria WAL Jugenieria WAL Jugenieria W genieria KAE Jugenieria KAE Jugenieria KAE Jugenieria

Registro Indecopi Nº 028979-2021/DSD

AE Inge	Registro Indecopi N° 028979-2021	Jagenieria Jagenieria Jagen
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : CC-EPF-PVA-01
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	- nugeria a result
	CANTERA SANTA CECILIA	The second of the second
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : 1 DE 1
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	FECHA: 25/11/2024

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS gagenieria KA

Información de Muestra

· mid	MTC E 505 - ASTM 3203		
	Información de Muestra	a) agente gagenierus	
: one	Elaboración: Laboratorio	%C.A. 4.50%	KAL
onia	Peso Específico Bulk	2.738 gr/cm3	KAL
	Peso específico teórico máximo	2.624 gr/cm3	
E. Juni	Porcentaje de vacíos	5.00 %	
	OBSERVACIONES: <u>La muestra fue proporcionada por el solicitante.</u>	Rev. Rev.	H.L.V. H.L.D.
	WAL WAL WAL WAL		
		ienia diinia moni	eria mieria
	E JOY WAE TO ARE JOY	KGENIE	
	and the same and the same	13	14

Jagenieria HAL Jagenieria HAL Ingenieria HAE Jugenieria HAE Jugeni genieria KAE Jugenieria Viceor Alfonso Harrera Lázaro
Inageniana
REG CHI Nº 216067 Jugenwa HAE Jugenwa KAE Jugenw AE Jugenieria MAE Jug

Registro Indecopi Nº 028979-2021/DSD

AE Inge	Registro Indecopi N° 028979-2021	Most regentary agentary
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : CC-EPF-PVA-02
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	- nugeria a gently
	CANTERA SANTA CECILIA	The state of the s
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : 1 DE 1
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	FECHA: 25/11/2024

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS gagenieria KA

Información de Muestra

mia		MTC E 505 - ASTM 3203			
		Información de Muestra			
Elabo	oración:	mienia : onik	%C.A	5.00%	KAL ionia
onea ia	Peso Específico Bulk	The said	2.607	gr/cm3	W. Wash
	Peso específico teórico máximo		2.531	gr/cm3	
E Jago NAE	Porcentaje de vacíos	- Jagen	4.60	%	
	OBSERVACIONES:			Rev. H.L.\	· mea
	La muestra fue proporc	cionada por el solicitante.	1000000 - 100	Ejec. H.L.[iewe - And
KAK mia K	AL WAL Inia	AE KAE	ia KAE		WAL
		genierun Jugenie	- gugaine		
mia KAL: oni	E	IA KA	GENIER	WAL	KAL

Jonac MAR Jagenia Ingenieria KAE Jugenieria KAE Jugeni Jugenwa HAE Jugenwa KAE Jugenw mieria KAE Jugenieria AE Jagenieria MAE Jagenieria MAE Jagenieria MAE Jagenieria MAE Jagenieria

Registro Indecopi Nº 028979-2021/DSD

AE Jugenieria

JA No	KAL KAL KAL	
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : CC-EPF-PVA-03
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	- Ougen a seme
	CANTERA SANTA CECILIA	The state of the s
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : 1 DE 1
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	FECHA: 25/11/2024

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS Jugenieria KA

Información de Muestra

. mile		MTC E 505 - ASTM 3203			
		Información de Muestra			
ieria	Elaboración: Laboratorio	mienia (mia)	%C.A	5.50%	KALimia
	Peso Específico Bulk Peso específico teórico máximo	a agenieria	2.596 2.512	gr/cm3 gr/cm3	eria Karaje
E Jan	Porcentaje de vacíos	E JOST AE JUGO	3.00	%	
	OBSERVACIONES: La muestra fue prop	orcionada por el solicitante.	genieria 1	Rev. H.L Ejec. H.L	v. D. mieria Jug
	ia mieria Manieria	KALL MALE MILEN	ia Kare		ia KALinia
	Judge MAE Judge OF	AE PARE	HOENIER	Egagen	

Jagenia MAE Jagenia MAE Jagenia MAE Ingenieria KAE Jugenieria KAE Jugeni 1/10ear Alfonso Herrery Lazaro
ANGENIERO CON.
REG CIT/ N° 215087 mieria NAE Jugenieria NAE Jugenieria NAE Jugenieria NAE Jugenieria Jugenwa HAE Jugenwa KAE Jugenw AE Jugenieria NAE Jugenieria NAE Jugenieria NAE

Registro Indecopi Nº 028979-2021/DSD

KAE Inge	Registro Indecopi N° 028979-2021/	DSD ierie	enieria
L MA	WAE WAE WAE	WAE OUR	KAE
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N° : _(CC-EPF-PVA-04
- C 100	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	- Jugar	Daden.
AL DIST	CANTERA SANTA CECILIA	L AF	- last
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° :	1 DE 1
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	FECHA:_	25/11/2024

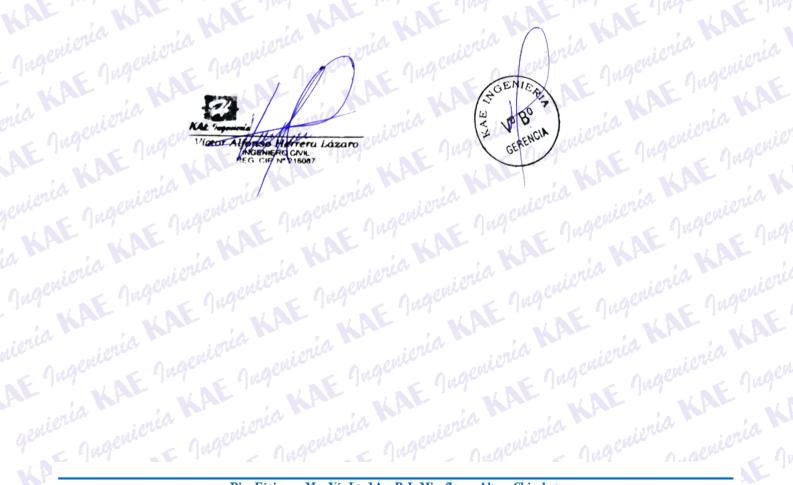
ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS gagenieria KA

Información de Muestra

and the		MTC E 505 - ASTM 3203			
		Información de Muestra			
ienia	Elaboración: Laboratorio	mieria inia	%C.A	6.00%	ionia
	Peso Específico Bulk Peso específico teórico máximo	mienia		gr/cm3 gr/cm3	
E Jugor	Porcentaje de vacíos		3.60	% Tayens	
	OBSERVACIONES: La muestra fue propo	rcionada por el solicitante.	genieria que	Rev. H.L.V. Ejec. H.L.D.	nia and
KAL	KAL mia KAL jenia	KAE MAE	ia KAE	KAE mia K	AF
	Judence Judence Ja	gentle Jugent	JOENIE	Judence Jud	

Registro Indecopi Nº 028979-2021/DSD

AE Jugenieria


JA KA	KAL KAL KAL KAL	
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°: CC-EPF-PVA-05
	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	- Outlette a result
	CANTERA SANTA CECILIA	TE THE TE
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : 1 DE 1
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento - Ancash	FECHA: 25/11/2024

ENSAYO DE PORCENTAJE DE VACÍOS DE AIRE EN MEZCLAS ASFÁLTICAS COMPACTADAS gagenieria KA

Información de Muestra

ia	DENSAS Y ABIERTAS MTC E 505 - ASTM 3203		
	Información de Muestra		
Elaboración:Laboratorio	mia Kalionia Kalionia	%C.A. 6.50%	AKAL mia
Peso Específico Bulk Peso específico teório	co máximo	2.590 gr/cm3 2.474 gr/cm3	inter KAL
Porcentaje de vacíos	gent Ingent Ingent	3.70 %	
OBSERVACIONES: La mui	estra fue proporcionada por el solicitante.	Rev. Ejec.	H.L.V. H.L.D.
KAE WAE WAS	A KAE JUNA KAE JU	KAE	Judge VAE Jud
	micron oria gagenie	nea Jewienia Jugen	ieria aevieria
mia KAL onia KAL	A LANGE KAN	THOENIE BY	IE JAY HAE

Jugenwa HAE Jugenwa KAE Jugenw mieria NAE Jagenieria NAE Jagenieria NAE Jagenieria NAE Jagenieria genieria KAE Jugen AE Jugenieria KAE Jugenieria KAE Jugenieria KA

P- Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° : _(CC-EPF-PEU-06
= 100g	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Jugen	Dident
	CECILIA	T	- 1004
SOLICITA	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	27/11/2024

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS COMPACTADAS

514 - ASTM D 2726

MTC E

Rev. H.L.V. Ejec. H.L.D.

naevieria

	Información de	e Muestra			
Muestra:	Sustitución 15% de Arena Chancada	NAT.	Saturación :	5 min	_ KAE
%C.A.:	5.53%		Temp. Agua :	25 °C	NO.
<u>Núcle</u>	o de Asfalto Extraído en Campo				
A: Pes	so del espécimen seco en el aire	ia [1245	gr.	34
B: Pes	so en el aire del espécimen saturado con superficie seca		1250	gr.	
C: Pe	so del espécimen en agua	July -	748	gr.	
P. Esp	pecifico de Bulk	Pe _m	2.480	gr/cm3	
P. Esp	pecifico Aparente	Pea	2.480	gr/cm3	
Peso	Unitario del agua	Pu _a	0.997	gr/cm3	
Peso	Unitario	Pu	2.47	gr/cm3	ionia KA
Núcles	o de Asfalto elaborado en Laboratorio				
A: Pes	so del espécimen seco en el aire	1 11/2	1247	gr.	JA.
B: Pes	so en el aire del espécimen saturado con superficie seca	34"	1248	gr.	
C: Pe	so del espécimen en agua	C 904	745	gr.	
P. Esp	pecifico de Bulk	Pe _m	2.479	gr/cm3	
P. Esp	pecifico Aparente	Pea	2.479	gr/cm3	
Peso	Unitario del agua	Pu _a	0.997	gr/cm3	= gagence
Peso	Unitario	Pu	2.47	gr/cm3	TOENIER
				nou	E 80
Grado	o de Compactación			= Jugen	GENENCIA
Grado	o de Compactación 100.04	mia N	JA KA	Care De	No.
OBSE	ERVACIÓN: - Jugeniero Jugen	- nually	ion las		

COMPACTADAS

KA- Jugenieria

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

MTC E

n-aemieria W

(AE Ingenie	na en acido a registro na	ecopi N° 028979-2021	A CHLO	
and a	The state of the s	- 10	W. Car	-(1/2)
PROYECTO : EVALU	CIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASF	FÁLTICO EN CALIENTE	REGISTRO N° : _(CC-EPF-
10000	CIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASF CADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO E	1000	_ REGISTRO N° : <u>_ (</u> _	CC-EPF-
10000	CADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO E	1000	_ REGISTRO N° : <u>(</u> -	CC-EPF-
MODIF CECILI	CADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO E	1000	_ REGISTRO N° : _(- _ PÁGINA N° : _	O1 de

514 - ASTM D 2726 Información de Muestra

KAL KA	estra: Sustitución 25% de Arena Chancada		Saturación :	5 min
	ionus into	ania.	1,000	a ta
Light - Out	% C.A. :5.53%		Temp. Agua :	25 °C
	Núcleo de Asfalto Extraído en Campo			
14	Nucleo de Asianto Extraido en Campo	Mar	W.A.	
	A: Peso del espécimen seco en el aire		1242	gr.
	B: Peso en el aire del espécimen saturado con superficie seca		1244	gr.
	C: Peso del espécimen en agua	was _	749	gr. Augusta
N. W.	P. Especifico de Bulk	Pe _m	2.509	gr/cm3
		Pe _a	2.509	gr/cm3
	F. Especifico Aparente	I G _a	2.509	gircino
	Peso Unitario del agua	Pu _a	0.997	gr/cm3
Kar I	WALL WALL	15	N. A.	
	Peso Unitario	Pu	2.50	gr/cm3
	Núcleo de Asfalto elaborado en Laboratorio			
	WAL WALL			
	A: Peso del espécimen seco en el aire	10.	1244	gr.
	B: Peso en el aire del espécimen saturado con superficie seca	ad	1245	gr.
	C: Peso del espécimen en agua	104	747	gr.
	P. Especifico de Bulk	5 - J	2.499	au/am2
200		Pe _m Pe _a	2.499	gr/cm3 gr/cm3
	r. Especifico Aparente	l Ga	2.499	gi/ciii3
	Peso Unitario del agua	Pua	0.997	gr/cm3
	AL KAL JAE	W.	. 10	
a la	Peso Unitario	Pu	2.49	gr/cm3
				(w) 20 7
	Grado de Compactación			E BO
	Grado de Compactación			GENENCIA
and the	Grado de Compactación 100.42	" Wes		
	Grado de Compactación 100.42			100
	= angles - angles		- A /W	CEY// Jacobs
	OBSERVACIÓN : La muestra fue tomada por personal técnico de laboratorio.		2/	1 - 104 . X
A TO	a massia iso terrida por porcenta tecritor de laboratorio.	, K	At Topminia	Rev. H.L.V.
		in which i	MGENIERO	rera Lázarojec. H.L.D.
			MEG CIF Nº	216087 CELL
			107	

A Jugenien

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

AE Ing	Registro Indecopi Nº 028979-2021/	DSD when a	genieria
PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-08
	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA		
SOLICITA	: ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	27/11/2024

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS **COMPACTADAS**

514 - ASTM D 2726

MTC E

Herrera Lázarolec. H.L.D.

n. aenieria

Información de Muestra

Muestra: Sustitución 35% de Arena Chancada	Saturación :	5 min
%C.A.: 5.53%	Temp. Agua :	25 °C
- Jugo - Ougeller - Ougeller Dugeller	- Owner	a reple
Núcleo de Asfalto Extraído en Campo		
A: Peso del espécimen seco en el aire	1244	gr.
B: Peso en el aire del espécimen saturado con superficie seca	1245	gr.
C: Peso del espécimen en agua	749	gr. Jagen
P. Especifico de Bulk	2.508	gr/cm3
P. Especifico Aparente Pe _a	2.508	gr/cm3
	120000	
Peso Unitario del agua Pu _a	0.997	gr/cm3
Peso Unitario Pu	2.50	gr/cm3
Núcleo de Asfalto elaborado en Laboratorio		
A: Peso del espécimen seco en el aire	1246	gr.
B: Peso en el aire del espécimen saturado con superficie seca	1247	gr.
C: Peso del espécimen en agua	751	gr. Jugen
P. Especifico de Bulk	2.511	gr/cm3
P. Especifico Aparente Pe _a	2.511	gr/cm3
Peso Unitario del agua	0.997	gr/cm3
AL WAL WAL THE WAL		
Peso Unitario Pu	2.50	gr/cm3
Grado de Compactación		TAE TAE
Grado de Compactación 99.90	, K	Ct.
anient a remier mierte		1.00
OBSERVACIÓN:	2007 - 100	12 d 2000

Registro Indecopi Nº 028979-2021/DSD

PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-01	Ĺ
- 104	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Outlean		
	CECILIA	1		
SOLICITA	: ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01	Ľ
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024	

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS COMPACTADAS

MTC E 514 - ASTM D 2726

Información de	<u>Muestra</u>		
Muestra: 4.5% de C.A.	Sat	uración :	5 min
	Tem	p. Agua :	25 °C
Núcleo de Asfalto Extraído en Campo			
A: Peso del espécimen seco en el aire	A	224 o	gr.
B: Peso en el aire del espécimen saturado con superficie seca	1:	4000	gr.
C: Peso del espécimen en agua	7	'35 g	gr.
KALL KALL	A KAPA	540	-
P. Especifico de Bulk	: 0700	- A 1 6/V	cm3
P. Especifico Aparente	Z.	513 gr/d	cm3
Peso Unitario del agua	Pu _a 0.	997 gr/d	cm3
Peso Unitario	Pu 2	.51 gr/o	cm3
1 650 Officially	" ONICO CO Z	.51	CITIO
Núcleo de Asfalto elaborado en Laboratorio			
A: Peso del espécimen seco en el aire	013	218 g	gr.
B: Peso en el aire del espécimen saturado con superficie seca	0.00		gr.
C: Peso del espécimen en agua	7	'38 g	gr.
P. Especifico de Bulk	Pe _m 2.	492 gr/d	cm3
P. Especifico Aparente			cm3
	- 0 all	0.11	
Peso Unitario del agua	Pu _a 0.	997 gr/d	cm3
Peso Unitario	Pu 2	. 48 gr/o	cm3
a review	mienter -	- miere	
Grado de Compactación			1
Crado do Comportación			
Grado de Compactación 100.85			رص
OBSERVACIÓN :		E 1007	
La muestra fue tomada por personal técnico de labora	torio.		1
	KAE 2	S / A	
	Victor	Alfonso Harren MGENIERO CIVIL REG. CIP Nº 21600	u Lá
		MURNIERO GIVIL	7

Registro Indecopi N° 028979-2021/DSD

AE Jugenie

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-02
- 104	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Ougen	
1	CECILIA	11	
SOLICITA :	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS **COMPACTADAS**

MTC E 514 - ASTM D 2726

<u>Información de Muestra</u>		
Muestra: 5.0% de C.A.	Saturación : 5 min	- W
	Temp. Agua :25 °C	La -
E Jude		
Núcleo de Asfalto Extraído en Campo	WAL W	
A: Peso del espécimen seco en el aire	1235 gr.	
B: Peso en el aire del espécimen saturado con superficie seca	1242 gr.	
C: Peso del espécimen en agua	740 gr.	
P. Especifico de Bulk Pe _m	2.460 gr/cm3	
P. Especifico Aparente Pe _a	2.460 gr/cm3	
Peso Unitario del agua Pu _a	0.997 gr/cm3	
Maria Maria Maria	White Harry	14
Peso Unitario Pu	2.45 gr/cm3	
Núcleo de Asfalto elaborado en Laboratorio		
A: Peso del espécimen seco en el aire	1238 gr.	
B: Peso en el aire del espécimen saturado con superficie seca	1240 gr.	
C: Peso del espécimen en agua	742 gr.	
P. Especifico de Bulk Pe _m	2.485 gr/cm3	
P. Especifico Aparente Pe _a	2.485 gr/cm3	
Peso Unitario del agua	0.997 gr/cm3	NIE
Peso Unitario Pu	0.997 gr/cm3 gr/cm3	1
1 eso cintano	10000 14	Bo
- July - July - July - July	- Jage - Jak	SERENCIA
Grado de Compactación	AL KAL	1
Grado de Compactación 98.98	inta onta	1
- Juger - Juger - Juger	The state of the s	
OBSERVACIÓN :		
La muestra fue tomada por personal técnico de laboratorio.	Alfonso Harrera Lazaro Re	v. H.L.V.
genienia Jugenienia Jugenienia Jugenie	Alfonso Harrera Lázaro Re NGENIERO CIVIL REG CIP Nº 216067	c. H.L.D.
	[10597] > [10597]	

Pje. Fátima - Mz. Y', Lt. 1A - P.J. Miraflores Alto - Chimbote Celular: 954444061 - 969785163; Email: kaeingenieria@gmail.com

Registro Indecopi Nº 028979-2021/DSD

AE Ingeniería Registro Indecopi Nº 028979-2021	DSD ALLENGE	
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EDE-DEIL-03
MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA CECILIA	KEGISTKON 10	= 944em
SOLICITA : ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	PÁGINA N° : _ FECHA :	01 de 01 25/11/2024

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS **COMPACTADAS**

MTC E 514 - ASTM D 2726

Informacio	ón de Muestra			
Muestra: 5.5% de C.A.	AKA	Saturación :	5 min	_ WA
		Temp. Agua :	25 °C	near
Núcleo de Asfalto Extraído en Campo	N. M. Pari			
A: Peso del espécimen seco en el aire	ionia [1249	gr.	20
B: Peso en el aire del espécimen saturado con superfici	ie seca	1236	gr.	
C: Peso del espécimen en agua	~ 1009°	743	gr. 🛭 🐠	
Water , Water W	71	A Park		
P. Especifico de Bulk	Pe _m	2.533	gr/cm3	
P. Especifico Aparente	Pe _a	2.533	gr/cm3	
	- Oct	Don C		
Peso Unitario del agua	Pu _a	0.997	gr/cm3	
a market and a second	William	1/2	William	14.
Peso Unitario	Pu	2.53	gr/cm3	
Núcleo de Asfalto elaborado en Laboratorio				
The state of the s	W. Was	N. K.		
A: Peso del espécimen seco en el aire	: mea	1247	gr.	
B: Peso en el aire del espécimen saturado con superfici	ie seca	1234	gr.	
C: Peso del espécimen en agua	1007	741	gr.	
War War	K Part V			
P. Especifico de Bulk	Pe _m	2.530	gr/cm3	
P. Especifico Aparente	Pe _a	2.530	gr/cm3	. (
Park United and area	DU C	0.007	1900	c gall
Peso Unitario del agua	Pu _a	0.997	gr/cm3	
Peso Unitario	Pu [2.52	gr/cm3	HOENIE
a service aniente	i et	لأنهم	gireinie	516
				A BO
Grado de Compactación				GEREN
The Market of the Control of the Con	10 10			GC
Grado de Compactación 100.12			1.090	1.49
A . ALC - AUDIO		Will do		MODILE
OBSERVACIÓN:		(1) () (V)		
UDBER VALIUN :	100			
La muestra fue tomada por personal técnico d	le laboratorio.	Mr. Augoricais /		
OBSERVACIÓN : <u>La muestra fue tomada por personal técnico d</u>	le laboratorio.	Alfonso Him	rera Lázaro	Rev. H.L.V.

DE Jugenier

n.aevieria

Registro Indecopi Nº 028979-2021/DSD

PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-04	Ļ
- 104	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Outlean		
	CECILIA	1		
SOLICITA	: ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01	Ľ
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024	

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS **COMPACTADAS**

MTC E 514 - ASTM D 2726

Núcleo de Asfalto Extraído en Campo A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Peso Unitario del agua Pua Peso Unitario A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua	Saturación :	5 min 25 °C gr. gr. gr. gr/cm3 gr/cm3 gr/cm3 gr/cm3
Núcleo de Asfalto Extraído en Campo A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Pem Pea	1246 1247 753 2.522 2.522 0.997 2.51 1249 1250 756	gr. gr. gr. gr/cm3 gr/cm3 gr/cm3 gr/cm3
Núcleo de Asfalto Extraído en Campo A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Pem Pea	1246 1247 753 2.522 2.522 0.997 2.51 1249 1250 756	gr. gr. gr/cm3 gr/cm3 gr/cm3 gr/cm3
A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Pea	1247 753 2.522 2.522 0.997 2.51 1249 1250 756	gr. gr. gr/cm3 gr/cm3 gr/cm3 gr/cm3
B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Pea	1247 753 2.522 2.522 0.997 2.51 1249 1250 756	gr. gr. gr/cm3 gr/cm3 gr/cm3 gr/cm3
B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pea Pea	1247 753 2.522 2.522 0.997 2.51 1249 1250 756	gr. gr. gr/cm3 gr/cm3 gr/cm3 gr/cm3
P. Especifico de Bulk P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pem Pea	2.522 2.522 0.997 2.51 1249 1250 756	gr/cm3 gr/cm3 gr/cm3 gr/cm3 gr. gr.
P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk Pem Pea Pea	2.522 0.997 2.51 1249 1250 756	gr/cm3 gr/cm3 gr/cm3 gr. gr.
P. Especifico Aparente Pea Peso Unitario del agua Pua Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk Pem Pea Pea	2.522 0.997 2.51 1249 1250 756	gr/cm3 gr/cm3 gr/cm3 gr. gr.
Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pe Pe Pe	1249 1250 756	gr/cm3 gr. gr.
Peso Unitario Pu Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pe Pe Pe	1249 1250 756	gr/cm3 gr. gr.
Núcleo de Asfalto elaborado en Laboratorio A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pe _a	1249 1250 756	gr. gr.
A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pe _a	1250 756	gr. Out
A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pe _a	1250 756	gr. Out
B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk Pe _m P. Especifico Aparente Pe _a	1250 756	gr. Out
B: Peso en el aire del espécimen saturado con superficie seca C: Peso del espécimen en agua P. Especifico de Bulk Pe _m P. Especifico Aparente Pe _a	1250 756	gr. Out
C: Peso del espécimen en agua P. Especifico de Bulk P. Especifico Aparente Pe _a	756	
P. Especifico Aparente Pe _a	2 528	
P. Especifico Aparente Pe _a	2 528	
- Jugen - Juger - Jugen - To		gr/cm3
Peso Unitario del agua	2.528	gr/cm3
Mary Mary	0.997	gr/cm3
and the second s	KA	gr/cm3
Peso Unitario Pu	2.52	gr/cm3
		KAE
Grado de Compactación		E Jack
Grado de Compactación 99.77	aid No	(Maria)
Add	274	
OBSERVACIÓN:	Le Proposed	A TOUR
La muestra fue tomada por personal técnico de laboratorio.	lator Alfonso	Herrera Lázaro Rockil N° 216067 Rev. H
	REG CIP	N 215067 Rev. F Ejec. F
	new /	A 48 200

Registro Indecopi Nº 028979-2021/DSD

PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-05
- 104	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Outlean	
	CECILIA	16	
SOLICITA	ELIAN RODRIGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS COMPACTADAS

MTC E 514 - ASTM D 2726

Informac	ción de Muestra		
Muestra: 6.5% de C.A.	ia Kina	Saturación :	5 min
		Temp. Agua :	25 °C
Núcleo de Asfalto Extraído en Campo	KA.		
A: Peso del espécimen seco en el aire	ieno [1235	gr.
B: Peso en el aire del espécimen saturado con superf	icie seca	1236	gr.
C: Peso del espécimen en agua	Le Jours	743	gr.
P. Especifico de Bulk	Pe _m	2.505	gr/cm3
P. Especifico Aparente	Pea	2.505	gr/cm3
	1000 - 000	00 - 1	
Peso Unitario del agua	Pu_a	0.997	gr/cm3
Peso Unitario	A Pu to	2.50	gr/cm3
	- Ongenic	O Menter	
Núcleo de Asfalto elaborado en Laboratorio			
A: Peso del espécimen seco en el aire	mia .	1231	gr.
B: Peso en el aire del espécimen saturado con superf	icie seca	1232	gr.
C: Peso del espécimen en agua	- NE JOUT	739	gr.
P. Especifico de Bulk	Pe _m	2.494	gr/cm3
P. Especifico Aparente	Pe _a	2.494	gr/cm3
= 1 ngon = 1 ngo = 1	wallen	149	gr/cm3
Peso Unitario del agua	Pu_a	0.997	gr/cm3
Peso Unitario	Pu Pu	2.49	gr/cm3
Grado de Compactación			Elay
Grado de Compactación 100.44	ionia	-near	(lone)
= Juger - nagent - no		Was Carl	
OBSERVACIÓN:	LAE JUST	Mator Alfonso H	Tresu Lánas
La muestra fue tomada por personal técnico	de laboratorio.	REG. CIF N	rrera Lázaro CIVIL 216067 R
		miercy	Ej
		JAEN /	

Registro Indecopi N° 028979-2021/DSD

	PROYECTO:	EVALUACIÓN DE ROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° : CC-EPF-PAA-0	6
	- nuger	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	all - Dudente	
		CECILIA	- NE TON SE TROP	
N. W.	SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° : 01 de 01	V
	UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA: 27/11/2024	, J
	AT THE PROPERTY.			

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA agenieria KA **MEZCLA DE PAVIMENTOS ASFÁLTICOS**

Información de Muestra

ia	MEZGLAD	MTC E 511 - ASTM D 4469	ALTICOS			
		Información de Muestra				
Mu	estra: Sustitución del 15% de Arena Chanca	<u>da</u>	Elaboración	Laboratorio	WAE	
ienea %	C.A. : 5.53%				ia	mia
KAL W	Peso específico aparente del asfalto		2.479	gr/cm3		
enia mia	Peso específico del Agregado Fino	innia	2.797	gr/cm3	W	
	Peso específico del Agregado Grueso		2.762	gr/cm3		
	Peso específico de C.A. Porcentaje de Agregado Fino en la mezcla a	ofóltion	1.026 52.0	gr/cm3		
N. Marie	Porcentaje de Agregado Frilo en la mezcia a		42.5			
	Porcentaje de C.A. en la mezcla asfáltica	in ania	5.5	and a	1	
			i de la companya de l			
	Promedio Ponderado del peso específico ap	arente del agregado total	2.684	gr/cm3		
Kar wia Ka	Peso específico teórico máximo de la mezcla	a asfáltica	2.581	gr/cm3	KA	
	Contenido de Asfalto		5.53%			mea
	Porcentaje de Asfalto Absorbido		1.14%			
mia inia	mid and	A KIN KA	wia W	W. K.P	ia!	
	OBSERVACIÓN:					
	La muestra fue tomada por perso	nal técnico de laboratorio.	7 = 1009			
Mar.	WALL WALL	N. K.		Rev.	H.L.V. H.L.D.	
		ioned ania		LJ6C.	110.0	
		- Ougenion				
		E TO ALLE		Just - VE		
ia sa	with the same		W. W.	() 1		
	and Color	11.1039		bruch		

n. aenieria K

AE Jugenieria

a tue tomada po nico de laborate Viacor Alforso Hirrera Lazaro
Ascensed City No 18067 AE Jagenieria KAE Jagenie Jugenieria KAE Jugenieria KAE Jugenieria genieria KAE Jugenieria KA = Jagenieria KAE Jagenier Jugenieria KAE Jugenierie

Registro Indecopi Nº 028979-2021/DSD

MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	
1	
CECILIA	
SOLICITA: ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR PÁGINA Nº: 01 de 01	
UBICACIÓN : Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash FECHA : 27/11/2024	1

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA Jugenieria KA MEZCLA DE PAVIMENTOS ASFÁLTICOS KAE Jugence

Información de Muestra

	Información de Muestra			
	Muestra: Sustitución del 25% de Arena Chancada	Elaboración	Laboratorio	- WAE
	% C.A.: 5.53%	ia		34
	general anglier			
	Peso específico aparente del asfalto	2.501	gr/cm3	
	r eso específico aparente del asiallo	2.301	gi/ciii3	
	Peso específico del Agregado Fino	2.797	gr/cm3	14
	Peso específico del Agregado Grueso	2.762	gr/cm3	
	Peso específico de C.A.	1.026	gr/cm3	
	Porcentaje de Agregado Fino en la mezcla asfáltica	52.0	%	
	Porcentaje de Agregado Grueso en la mezcla asfáltica	42.5	%	
	Porcentaje de C.A. en la mezcla asfáltica	5.5	%	W. Carlot
	Promedio Ponderado del peso específico aparente del agregado total	2.684	gr/cm3	
	r tomedio i onderado del peso específico aparente del agregado total	2.004	gi/cilio	
In W	Peso específico teórico máximo de la mezcla asfáltica	2.601	gr/cm3	
	Contenido de Asfalto	5.53%		
		A NEW CO		
	Porcentaje de Asfalto Absorbido	1.41%		
		W. W.		
	ia mia mia		14.	10
	OBSERVACIÓN:			
	La muestra fue tomada por personal técnico de laboratorio.	A.F. Town	- NE	
	34	What I		/. H.L.V. c. H.L.D.
	vienus inter inter inter	tonik	1	
	a relieve a resident	A ACTUE	- mile	
	- 1007 - 191 //c 1/190 . C	1 004	Julie x	
	Dr War , Jan Color at All	GENI	AL M	
		CELLI	\mathbb{R}^{N}	

ia KAE Jugewieria K

KAE Jugenieria K

Jugenieria KAE Jugi

ia NAE Jugenieria K

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi N° 028979-2021/DSD

PROYECTO:	EVALUACIÓN DE ROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PAA-08
	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	Le Calen	
	CECILIA	- VE . I WAT	
SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	27/11/2024

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA MEZCLA DE PAVIMENTOS ASFÁLTICOS

Información de Muestra

ia	WEZGLAD	MTC E 511 - ASTM D 4469	ALTICOS			
		Información de Muestra				
Muestra:	Sustitución del 35% de Arena Chancac	la	Elaboración	Laboratorio	VAE	
% C.A.:	5.53%	ienia ini			ia	mia
Peso	específico aparente del asfalto		2.509	gr/cm3		
Peso	específico del Agregado Fino	inva	2.797	gr/cm3	N. N.	
Peso	específico del Agregado Grueso		2.762	gr/cm3		
Peso	específico de C.A.		1.026	gr/cm3		
Porce	entaje de Agregado Fino en la mezcla a	sfáltica	52.0	%		
Porce	entaje de Agregado Grueso en la mezcla	a asfáltica	42.5	%		
Porce	entaje de C.A. en la mezcla asfáltica		5.5	%		
Prom	nedio Ponderado del peso específico apa	arente del agregado total	2.684	gr/cm3		
Peso	específico teórico máximo de la mezcla	asfáltica	2.605	gr/cm3		
Cont	enido de Asfalto	unionia angeni	5.53%	ria angew	ieria	ieria
Porce	entaje de Asfalto Absorbido		1.42%			
nia novienia	mieria mieria	i enia	ieria	ionia (ieria	
OBSI	ERVACIÓN : La muestra fue tomada por persor	nal técnico de laboratorio.	The John			
mid Kpanis	A KALL	mia Kara			H.L.V. H.L.D.	W. W
	Jugenierus Jugen	agenienia	Jugenier	agenierea		

Rev. H.L.V. Ejec. H.L.D. nia NAE Jugenieria N

Jugenieria KAE Jugenieria KAE Jugenieria Jugenieria KAE Jugenieria KAE genieria KAE Ingenieria

Registro Indecopi N° 028979-2021/DSD

01 de 01	
25/11/2024	
	7

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA Jugenieria KA MEZCLA DE PAVIMENTOS ASFÁLTICOS KAE Jugence

Información de Muestra

a de	MTC E 511 -	ASTM D 4469		
	Información	n de Muestra		
	Muestra: 4.5% de C.A.	Elaboración	Laboratorio	
mid	inner in in	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	io	14
		1000 = 1000		
	Peso específico aparente del asfalto	2.492	gr/cm3	
enca mia	Peso específico del Agregado Fino	2.721	gr/cm3	N. W.
	Peso específico del Agregado Grueso	2.762	gr/cm3	
	Peso específico de C.A.	1.035	gr/cm3	
	Porcentaje de Agregado Fino en la mezcla asfáltica	52.5		
14	Porcentaje de Agregado Grueso en la mezcla asfáltica	43.0	W. Par	
	Porcentaje de C.A. en la mezcla asfáltica	4.5		20
	Promedio Ponderado del peso específico aparente del agre	egado total 2.663	gr/cm3	
		2.000	9,,5,,,,,	
KIND JAY	Peso específico teórico máximo de la mezcla asfáltica	2.624	gr/cm3	
	Contenido de Asfalto	4.50%		onea in
	recon - number o news	Daniello Daniello		
	Porcentaje de Asfalto Absorbido	1.20%		
		VAL.		
	ia inta	in the	A MA	34
	OBSERVACIÓN:			
	La muestra fue tomada por personal técnico de labo	oratorio.		
W. W.	WAR IN		Rev. Ejec.	H.L.V. H.L.D.
	willia jerta jerta	inia Com		
	a della a lastella	nesser anderen		
	E 1007 . NE 100/ C/ 1/00	1 5 1007		

Rev. H.L.V. Ejec. H.L.D. ieria KAE Jugenieria K

KAE Jugenieria KAE Juge

KGENIER

AE Jugenieria

ia NAE Jugenieria K Jugenieria KAE Jugenieria ieria KAE Juge AP Jugenieria KAE Jugenieria KAE Jugenieria KAE Jugenieria Jugenieria KAE Jugenieria KA genieria KAE Jugenieria Jugenieria KAE Jugenieria

Registro Indecopi Nº 028979-2021/DSD

	PROYECTO:	EVALUACIÓN DE ROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PAA-02
	c gagen	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Juden	Duneni
		CECILIA	-NE -	C 1007
W.	SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° : _	01 de 01
	UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	25/11/2024

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA Jugenieria KA MEZCLA DE PAVIMENTOS ASFÁLTICOS KAE Jugence

Información de Muestra

20	MTC E 511 - ASTM D 446	69		
	Información de Muest	ira A walenierzen		
KAL KA	Muestra: 5.0% de C.A.	Elaboración	Laboratorio	The lade
				ia dienia
	Peso específico aparente del asfalto	2.485	gr/cm3	
enia inia	Peso específico del Agregado Fino	2.721	gr/cm3	KAL
	Peso específico del Agregado Grueso Peso específico de C.A.	2.762 1.035	gr/cm3 gr/cm3	
KAN	Porcentaje de Agregado Fino en la mezcla asfáltica Porcentaje de Agregado Grueso en la mezcla asfáltica	52.3 42.8	ME	
	Porcentaje de C.A. en la mezcla asfáltica	5.0	a menioria	mieria .
	Promedio Ponderado del peso específico aparente del agregado total Peso específico teórico máximo de la mezcla asfáltica	2.654	gr/cm3 gr/cm3	
	Contenido de Asfalto	5.00%	girano	onia mia
	Porcentaje de Asfalto Absorbido	1.25%		
ia KAR	a KALL MALL MARKET K	ALIAK	AL KA	IF WAL
	OBSERVACIÓN:			
	La muestra fue tomada por personal técnico de laboratorio.	THE TOWN	Rev.	H.L.V.
	vienca mienca monifica	a mileni	Ejec.	H.L.D.
	LE Juger Juger	E Jugen	Julyence .	
	KAE Insuring	GEN		

OBSERVACIÓN: ia KAE Jugenieria K

AE Jagenieria KAE Jagen

genieria KAE Jugenieria KAŽ

Jagenieria KAE Jagenieri

KAE Jugenieria K

1/1000 Alfonso Harrera Lazaro
AREG CIF Nº 216067 Jagenieria KAE Jage Jugenieria KAE Jugenieria KAE Jugenieria FOENIER nagenieria KAE Jagenieria KAE

Registro Indecopi N° 028979-2021/DSD

NA N°: 01 de 01	1
ECHA: 25/11/2024	
	1

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA Jugenieria KA MEZCLA DE PAVIMENTOS ASFÁLTICOS

Información de Muestra

io		C E 511 - ASTM D 4469	ALTICOS			
	- Jugenierus Jugenierus	ormación de Muestra				
VA.	luestra: 5.5% de C.A.	KAL	Elaboración	Laboratorio	MAE	
					ia i	
	Peso específico aparente del asfalto	E WD	2.530	gr/cm3		
ia la	Peso específico del Agregado Fino	wid.	2.721	gr/cm3	1614	
	Peso específico del Agregado Frito	million	2.762	gr/cm3		
	Peso específico de C.A.	4 Mill	1.035	gr/cm3		
	Porcentaje de Agregado Fino en la mezcla asfáltio	a	52.0	1 2 1 947		
14.	Porcentaje de Agregado Grueso en la mezcla asfa	_ / 100.00	42.5			
	Porcentaje de C.A. en la mezcla asfáltica	Canta.	5.5		14	
		" OULLE	30000			
	Promedio Ponderado del peso específico aparent	e del agregado total	2.646	gr/cm3		
AL K	Peso específico teórico máximo de la mezcla asfá	ıltica	2.596	gr/cm3		
	nia mia	34	mi O	14	34	4
	Contenido de Asfalto	Dille out	5.50%			
	The same of the same	- Augus	a all			
	Porcentaje de Asfalto Absorbido	AL N	1.41%			
A Property of						
	OBSERVACIÓN :					
	La muestra fue tomada por personal téc	nico de laboratorio.				
		W. PAI	AL	Rev	. H.L.V.	
Side William	COME OF THE PARTY	30		Ejed	. H.L.D.	
			Lieve			
	- augent - augent	10-Allen	0009			
	E THE ME	1004	HOENIER			
		1	3			

ia KAE Jugenieria K

Rev. H.L.V. Ejec. H.L.D. ia KAE ieria KAE Jugewieria K Jugarienia

AE Jugenieria

Registro Indecopi N° 028979-2021/DSD

PROYECTO:	EVALUACIÓN DE ROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° : CC-EPF-PAA-04	
	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	oute a procession	
	CECILIA	The state of the s	
SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° : 01 de 01	
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA: 25/11/2024	1.5

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA Jugenieria KA MEZCLA DE PAVIMENTOS ASFÁLTICOS KAE Jugence

Información de Muestra

ald the	MTC E 511 -	- ASTM D 4469		
	_ Augenia _ Augenia Informació	n de Muestra		
KAL KA	Muestra: 6.0% de C.A.	Elaboración	Laboratorio	
			enta mienta	
KAL	Peso específico aparente del asfalto	2.528	gr/cm3	
enta " ienta	Peso específico del Agregado Fino Peso específico del Agregado Grueso	2.721 2.762	gr/cm3 gr/cm3	nia hi
	Peso específico de C.A. Porcentaje de Agregado Fino en la mezcla asfáltica	1.035 51.7	gr/cm3	
:onia	Porcentaje de Agregado Grueso en la mezcla asfáltica Porcentaje de C.A. en la mezcla asfáltica	42.3 6.0	KAL	CAL KA
	Promedio Ponderado del peso específico aparente del agre	egado total 2.637	gr/cm3	
KAL	Peso específico teórico máximo de la mezcla asfáltica	2.590	gr/cm3	
	Contenido de Asfalto	6.00%		ia ienia
	Porcentaje de Asfalto Absorbido	1.65%		
mia mien	ia ionia ionia	mia ionia	inia Kina	inia
	OBSERVACIÓN : La muestra fue tomada por personal técnico de lab	poratorio.		
WAL KAL	in KAL JAK	KAL	Rev. H.L.\ Ejec. H.L.[
	mie agenieron agenie	revienca argentent	nossionia .	
	27	The second	Elasti.	

ia KAE Jugenieria K

ia KAE Jugenieris

Rev. H.L.V. Ejec. H.L.D. KAE Jugenieria K

Jagenieria KAE Jage

Jugenieria XIII Jugenieria MAE Jugenieria MAE Jugenieria MAE Jugenieria AE Jagenieria KAE Ja Jugenieria KAE Jugenieria KAE genieria KAE Jugenieria KA

Registro Indecopi N° 028979-2021/DSD

PROYECTO:	EVALUACIÓN DE ROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PAA-05
	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	were ander	
	CECILIA	- 15 . 10-1	
SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024

ENSAYO CÁLCULO DEL PORCENTAJE DE ASFALTO QUE ABSORBE EL AGREGADO EN UNA Jugenieria KA MEZCLA DE PAVIMENTOS ASFÁLTICOS KAE Jugence

Información de Muestra

Juge - Jugen - Juger Inform	mación de Muestra		
AL WALL AE	AL NEW YORK	E 1007	
Muestra: 6.5% de C.A.	Elabora	ción Laboratorio	- WAL 1
		inta	in ania
	- 100000 - 100	The sale	
Peso específico aparente del asfalto	2.494	gr/cm3	
The state of the s		War I	
Peso específico del Agregado Fino	2.721	gr/cm3	and the
Peso específico del Agregado Grueso	2.762	gr/cm3	
Peso específico de C.A.	1.035	gr/cm3	
Porcentaje de Agregado Fino en la mezcla asfáltica	51.4		
Porcentaje de Agregado Grueso en la mezcla asfált		- Washington	" Marie Marie
Porcentaje de C.A. en la mezcla asfáltica	6.5	10 to	
Promedio Ponderado del peso específico aparente o	del agregado total 2.629	gr/cm3	
Fromedio Fonderado del peso específico aparente o	dei agregado total 2.629	gi/ciiis	
Peso específico teórico máximo de la mezcla asfálti	ca 2.590	gr/cm3	
mile with		3.4	100
Contenido de Asfalto	6.50%	into	
	- Dagens	explored and	
Porcentaje de Asfalto Absorbido	2.00%	C 1007	
When When I H	The state of the s	The state of	
inta in	14	2	14
OBSERVACIÓN:			
La muestra fue tomada por personal técnic	co de laboratorio.		
What I was a		N. Marie	Rev. H.L.V. Ejec. H.L.D.
	a sa	Canto.	-jec. H.E.D.
		we will	
- 1 mg - 1 mg - 1	indicate a lagran	- Marie	
	11T / 1880 / 1	S. In India	

ia KAE Jugenieria K

Rev. H.L.V. Ejec. H.L.D. KAE Jugenieria K

Registro Indecopi Nº 028979-2021/DSD

AE Inge	E lage - angent - angent - angente - an		
ia KP	KAL KAL KAL KAL	WAL	· K
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO	REGISTRO N° : _	CC-EPF-RO
- nager	EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO		
	EN CANTERA SANTA CECILIA		
SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N°:_	01 de (
UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	27/11/20

E Jugenieria KA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

ia	ENSA	AYO D	E RESIST	ENCIA A	MTC E 51		_	DE MEZCLA	AS ASFAI	LIICAS	
					Informac	<u>ión de M</u>	<u>uestra</u>				
Mr. mia	N	luestra:	Sustitución Arena Ch		1010		a ia	Elaboración:	Laboratori	<u>o</u> , , , , , ,	IE . Juni
	gage	% C.A.: _	5.5	3%	gence						
enia menien			d específica d d específica te		A PAR	vienia		2.479 2.581	gr/cm3 gr/cm3	ienia	
E gage		Densidad Porcenta	d ije de vacíos d	le aire del esp	pécimen			2.745 4.000	gr/cm3 %		
	ieni	A.	mient	QV T	nea	e Lil	enia	inia	.10		mia
	* L	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)		
and a	1	1	27/11/2024	29/11/2024	10.18	6.75	81.39	7040	86.49	1	
		2	27/11/2024	20/11/2024	10 15	6.73	80 Q1	7120	99 00		

E WAL	Porcenta		de aire del esp	oécimen			4.000	%		
	ica	mieri	A ·	mia	ar Lid	enia	inia	N. A.	onia.	nia Kr
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugeni	
Mary In	1 ,	27/11/2024	29/11/2024	10.18	6.75	81.39	7040	86.49		
	2	27/11/2024	29/11/2024	10.15	6.73	80.91	7120	88.00	: anew	20
	3	27/11/2024	29/11/2024	10.17	6.74	81.23	7090	87.28	a equile	
KAE		K			E To		K.F.			
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el	solicitante.	ilento		Rev. H.L.V. Ejec. H.L.D.	

KAK Jugenienia Rev. H.L.V. Ejec. H.L.D. AE Jugenieria La muestra fue proporcionada por el solicitante. Jugenieria KAE Jugenier genieria KAE Jugi OBSERVACIONES: ia KAE Jugenieria KAE

genieria KAE Jugi Jagenieria MAE Jagenieria MAE Jugenieria MAE Jugeni Marinia Harrera Lazaro
Ingenierio Civil Reg Ciri Nº 216067 z Jugenieria KAE Jugenieria KAE Jugenieria

t. 1A NA Ingenieria NAE Ingenieria
NAE Ingenieria
NAE Ingenieria AE Jugenieria KAE Jugeni genieria KAE Jugenieria KAE = Jugenieria KAE Jugenieria KAE

nia NAE Jugenieria K

Registro Indecopi Nº 028979-2021/DSD

AE Inge	Registro Indecopi N° 028979-2021/I	adenie v	
ia WA	WAL WAL WAL WAL	MAE	T K
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO	REGISTRO N° :	CC-EPF-RC
- nuger	EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO	- Outlean	
	EN CANTERA SANTA CECILIA		
SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : _	01 de 0
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	27/11/20

E Jugenieria KA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

34	MTC E 513 - ASTM D 1074	E DE MEZCLAS ASFALTICAS
wienen Juge	Información de Muestra	igenierus - Jugenierus - Jugenierus
Karia K	Sustitución del 25% de Muestra: Arena Chancada	Elaboración: <u>Laboratorio</u>
ingente !	% C.A.: <u>5.53%</u>	- Jugenier Jugenierus Jugenierus
eria	Gravedad específica de volumen Gravedad específica teórica máxima	2.501 gr/cm3 2.601 gr/cm3
E Jager	Densidad Porcentaje de vacíos de aire del espécimen	2.750 gr/cm3 3.860 %
genieria	N° Fecha de Fecha de Diámato Altura Ána	Lectura F'c
- 100m	Nícles Fleta de Fecha de Diámetro Altura Área	Lectura FC

	Densida Porcenta		de aire del esp	pécimen			2.750 3.860	gr/cm3 %		
	ia	mient	a	nia	green Lide	enia	inia	Man	onia Mi	ia KA
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Ingenie	
Maria San	1 ,	27/11/2024	29/11/2024	10.14	6.78	80.75	7250	89.78	- N	
	2	27/11/2024	29/11/2024	10.13	6.75	80.60	7360	91.32	inter	100
	3	27/11/2024	29/11/2024	10.11	6.71	80.28	7380	91.93	ence	
MAE	KA	K	AE .	KA	E	KAE	a Joseph M.		WAE Judy	
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el s	solicitante.	ilentia		Rev. H.L.V. Ejec. H.L.D.	

KAK Jugenienia Rev. H.L.V. Ejec. H.L.D. AE Jugenieria genieria KAE Jugenieria La muestra fue proporcionada por el solicitante. Jugenieria KAE Jugenier genieria KAE Jugi OBSERVACIONES: ia KAE Jugenieria KAE

Jagenieria KAE Jagenieria KAE WA Ingenieria WAE Jugenieria WAE Jugenieria AE Jugenieria KAE Jug - Jugenieria KAE Jugenieria KAE genieria KAE Ingenieria KA

Registro Indecopi Nº 028979-2021/DSD

KAE Inge			
wia KP	KAL KAL KAL KAL	WAL	. 1
PROYECTO :	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO	REGISTRO N° :	CC-EPI
- anger	EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO	- Outlette	
	EN CANTERA SANTA CECILIA	1	
SOLICITA :	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PAGINA N° : _	01
UBICACIÓN:	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:_	27/1

E Jagenieria KA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

JA.	NSAYOL	DE KESIS I	I ENCIA A		3 - ASTM I		DE MEZCLA	AS ASFAL	IICAS	
				Informac	ión de Mu	uestra //				
Kinia Ki	Muestra:		del 35% de Chancada	- un		in.	Elaboración:	Laboratorio	KA	- 1004 - 1004
	% C.A.:	5 00 5.5	53%	deme.						
enia inia		ad específica o		Kar			2.509	gr/cm3	Maria	
	Densida		leonca maxim	a nage			2.605 2.754	gr/cm3 gr/cm3		
E WAI		taje de vacíos	de aire del es	pécimen			3.680	%		
	oria	, dien	A ·	onia	al "	nia	inia	.107	ia	ia N
	N°	Fecha de	Fecha de				Lectura	F'c		

	Densida Porcenta	id aje de vacíos d	de aire del esp	oécimen			2.754 3.680	gr/cm3 %	
	id	mieni	A.	oned	gree Lak	onia	mia	NA.	enia mia
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugenie Ja
Mary In	1 ,	27/11/2024	29/11/2024	10.19	6.79	81.55	7040	86.32	N. M.
	2	27/11/2024	29/11/2024	10.17	6.72	81.23	6980	85.93	inta in
	3	27/11/2024	29/11/2024	10.18	6.75	81.39	6950	85.39	enco militar
WAE	KA	K	AE.	KA	E .lo.	MAE	e look	E. Jan	WAE Jugar WAE
	OBSER	ACIONES:							Rev. H.L.V.

KAK Jugenienia eria KAE Juge Rev. H.L.V. Ejec. H.L.D. AE Jugenieria Jaenieria KAE Jugenieria La muestra fue proporcionada por el solicitante. Jagenieria KAE Jagenier genieria KAE Jugi OBSERVACIONES: ia KAE Jugenieria KAE

Jugenieria KAE Jugenieria KAE Water Alfords Merrera Lazaro
Marinera Cava
REG CIF Nº 216087 Ingenieria KAE Jagenieria KAE genieria KAE Jugenieria K

Registro Indecopi Nº 028979-2021/DSD

PROYECTO : EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO Nº: CC-EPF-RCS-01 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO SOLICITA ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR PAGINA N° **UBICACIÓN:** Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash 25/11/2024

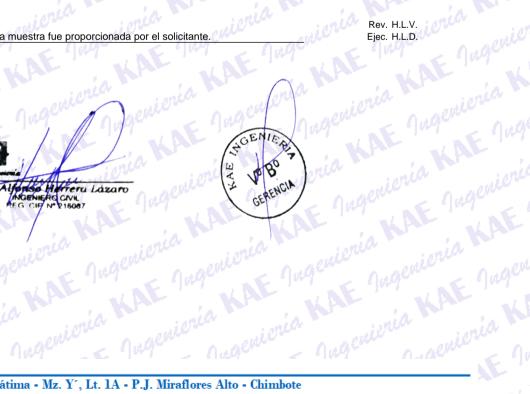
ngenieria NA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

3A				MTC E 51	3 - ASTM I	D 1074				
mierce Jugenie				Informac	ión de Mı	uestra W				
mia Ka	Muestra:	4.5% d	le C.A.	5/10		ia.	Elaboración: _	Laboratorio	<u>, , , , , , , , , , , , , , , , , , , </u>	L in
agence Jag										
onia Waria	Graveda	nd específica d	le volumen		ia	KAL	2.492	gr/cm3	MAL	
a william		ad específica to	eórica máxim	a , e		ie	2.624	gr/cm3		
c for	Densida					all enter	2.550	gr/cm3		
The Marie	Porcenta	aje de vacíos d	de aire del esp	pécimen		W.L.	5.000	%		
revienia mien	ia	mieni	a see	onia *	, r i	enia	inia	.:0	ia di	nia KP
T - Julier.	N°	Fecha de	Fecha de	Diámetro	Altura	Área	Lectura	F'c		

	Densida Porcenta	id aje de vacíos (de aire del esp	pécimen) all	2.550 5.000	gr/cm3 %		
	ia	adient	a	onia	J. W.	enia	inia	NA.	onia	nia KA
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugence	
Maria Contraction	1 ,	23/11/2024	25/11/2024	10.17	6.78	81.21689	7250	89.27		
	2	23/11/2024	25/11/2024	10.16	6.75	81.13705	7140	88.00	: anca	20
	3	23/11/2024	25/11/2024	10.16	6.72	81.12108	7050	86.91	report	
MAE	KA	K	AE .	ANA	E To	MAE	i and	E 100	KAE 1009	
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el :	solicitante.	il new	vienia	Rev. H.L.V. Ejec. H.L.D.	

AE Jugenienia genienia KAE Ing OBSERVACIONES: ia KAE Jugenieria KAE


AE Jagenieria KAE Ja

genieria NAE Jugenieria W

La muestra fue proporcionada por el solicitante. Jagenieria KAE Jagenieria KAE

Viceof Alfonso Merrera Lázaro Ingelneko civil REG CIP Nº 216087

AE Jugemieria Rev. H.L.V. Ejec. H.L.D.

Registro Indecopi Nº 028979-2021/DSD

PROYECTO : EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO N°: CC-EPF-RCS-02 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO SOLICITA ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR PAGINA N° **UBICACIÓN:** Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash 25/11/2024

AE Jugenieria KA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

30				MTC E 51	3 - ASTM I	D 1074				A Maria
vienus Jugenie				Informac	ión de Mı	uestra //				- Augest
mia Ka	Muestra:	5.0% d	le C.A.	1010		JA.	Elaboración: _	Laboratorio	KA	12
ingente Jug										revience
enia Amia		ıd específica d			mia	Kar	2.485	gr/cm3	MAL	KAL
< Jugenie	Densida					whenie	2.607 2.739	gr/cm3 gr/cm3		augenie
mia KAL	Porcenta	aje de vacíos d	de aire del esp	oécimen		W. W.	4.600	%	KAL	MA
genier gugenien	N°	Fecha de	Fecha de	Diámetro	Altura	Área	Lectura	F'c		nia nad

	Densida Porcenta	d aje de vacíos (de aire del esp	pécimen		Jage 1	2.739 4.600	gr/cm3 %		
	ia			onia		enia	mia		onea	nia Win
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugence	
Marie San Land	1 ,	23/11/2024	25/11/2024	10.15	6.78	80.91368	6950	85.89	. W	
	210	23/11/2024	25/11/2024	10.17	6.75	81.23287	6870	84.57	inta	20
	3	23/11/2024	25/11/2024	10.16	6.72	81.12108	6700	82.59	ence	
MAE	KA	K	AE .	AKA	F 100	MAE	i Jarda		WAE Just	
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el	solicitante.	il new		Rev. H.L.V. Ejec. H.L.D.	

AL Juyamiania Rev. H.L.V. Ejec. H.L.D. AE Jugenieria La muestra fue proporcionada por el solicitante. Jagenieria KAE Jagenier genieria KAE Jag OBSERVACIONES: ia KAE Jugenieria KAE

Juganiania MAL Juganiania Jugenieria KA Water Alfords Merrera Lazaro
Marinera Cava
REG CIF Nº 216087 = Jagenieria KAE Jagenieria KAE genieria KAE Jugenieria

n. nevieria W

Registro Indecopi Nº 028979-2021/DSD

PROYECTO : EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO N°: CC-EPF-RCS-03 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO SOLICITA ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR PAGINA N° **UBICACIÓN:** Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash 25/11/2024

ngenieria NA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

30				MTC E 51	3 - ASTM [D 1074				
mierca Jagenie				Informac	<u>ión de Mı</u>	<u>uestra</u>				
Mrs. Maria	Muestra:	5.5% d	le C.A.	1010		12	Elaboración: _	Laboratorio	<u>.</u> , , , , , ,	1
ingenie Jug										
enia kinia		ad específica d			mia	Kur	2.530	gr/cm3	KAL	
- Ougenier-	Graveda Densida	ad específica to d	eórica máxim	a nuge		newill	2.596 2.739	gr/cm3 gr/cm3		
IF KAL		aje de vacíos d	de aire del esp	pécimen		(prof	3.000	%		
movienca wien	ia	mient	A	nia	ar li	enia	mia	.10	ria .	nia KP
and I was	N°	Fecha de	Fecha de	Diámetro	Altura	Área	Lectura	F'c		

	Densida Porcenta	d aje de vacíos o	de aire del esp	pécimen		agent .	2.739 3.000	gr/cm3 %		
	ia	mient	a	onia	J. W.	enia	inia	NA.	onia mi	
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugence	
Maria In	1 ,	23/11/2024	25/11/2024	10.18	6.72	81.3927	6520	80.11	The Mark	
	210	23/11/2024	25/11/2024	10.15	6.69	80.91368	6320	78.11	innea	in
	3	23/11/2024	25/11/2024	10.17	6.71	81.23287	6510	80.14	ethic	
MAE	KA	K	AE .	A KA	E Jan	MAE	i and		WAE Juger	
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el :	solicitante.	il ^{neo}		Rev. H.L.V. Ejec. H.L.D.	

d and and and a service of the servi Rev. H.L.V. Ejec. H.L.D. AE Jugenienia La muestra fue proporcionada por el solicitante. Jagenieria KAE Jagenier genienia KAE Ing OBSERVACIONES:

ia KAE Jugenieria KAE Jagenieria KAE Jagenieria KAE mieria NAE Jugemieria WA - Jugenieria WAE Jugenieria WAE Jugenieria Jugenieria KAL Jugenieria KAL genieria KAE Ingenieria K

n. aevieria K

AE Jugenieria KAE

Control de Calidad en Mecánica de Suelos, Concreto y Asfalto. Perfiles y Expedientes Técnicos Prestación de Servicios Generales

Registro Indecopi Nº 028979-2021/DSD

PROYECTO : EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO N°: CC-EPF-RCS-04 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO SOLICITA ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR PAGINA N° **UBICACIÓN:** Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash 25/11/2024

AE Jagenieria KA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

34				MTC E 51	3 - ASTM I	D 1074				
mieros Jagenia				Informac	ión de Mı	uestra W				
mia Ka	Muestra:	6.0% c	de C.A.	1000		12	Elaboración:	Laboratorio	KA	1
ingenies Jus										
enia mia		ad específica o			mia	Kar	2.528	gr/cm3	KAL	
- Jugenie	Graveda Densida	ad específica t ad	eórica máxim	a guge		a chewill	2.590 2.739	gr/cm3 gr/cm3		
IL KAL	Porcent	aje de vacíos o	de aire del esp	oécimen		1	2.800	%	WAL	
aenienie	near	ieri	307	onla		enia	inia	.10		nia
1 2 1 W	N°	Fecha de	Fecha de	Diámetro	Altura	Área	Lectura	F'c		

	Densida Porcenta	d aje de vacíos d	de aire del esp	pécimen		aspent.	2.739 2.800	gr/cm3 %		
	ia	mient	a	onia	are al	eria	inia	N. S.	onia	ia KA
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugenie	
10 10	1 ,	23/11/2024	25/11/2024	10.15	6.75	80.91368	6640	82.06	. K	
	2	23/11/2024	25/11/2024	10.12	6.74	80.43608	6680	83.05	inta	ide
	3	23/11/2024	25/11/2024	10.16	6.69	81.0732	6720	82.89	evice	
MAE		K			E To		e land		KAE Jag	
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el :	solicitante.	ilmin	vienia	Rev. H.L.V. Ejec. H.L.D.	

KAE Jagemieria Rev. H.L.V. Ejec. H.L.D. AE Jugenienia La muestra fue proporcionada por el solicitante. Jugenieria KAE Jugenier genieria KAE Ing OBSERVACIONES: Jugenieria KAE Jugi

ia KAE Jugenieria KAE Jagenieria KAE Jagenieria KAE MAE Papernia Jugenia Augenia A MA Jugenieria MAE Jugenieria MAE Jugenieria nieria KAE Jugeniemie Tagenieria KAE Jagenieria KATAT genieria KAE Jugenieria X Jugenieria KAE Jugenieria

n. aevieria K

Registro Indecopi Nº 028979-2021/DSD

PROYECTO : EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO REGISTRO N°: CC-EPF-RCS-05 EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO SOLICITA ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR PAGINA N° **UBICACIÓN:** Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash 25/11/2024

ngenieria NA ENSAYO DE RESISTENCIA A COMPRESIÓN SIMPLE DE MEZCLAS ASFÁLTICAS

Información de Muestra

30				MTC E 51	3 - ASTM [D 1074				
mierce Jagenie				Informac	<u>ión de Mı</u>	<u>uestra</u>				
mia KA	Muestra:	6.5% d	le C.A.	5/10		in	Elaboración: _	Laboratorio	<u>, , , , , , , , , , , , , , , , , , , </u>	L da
agence Jag										
onia Kamia	Graveda	ad específica d	le volumen		ia	KAL	2.494	gr/cm3	MAL	
a william		ad específica to	eórica máxim	a		ie	2.590	gr/cm3		
c lay	Densida					all pool	2.739	gr/cm3		
In War	Porcenta	aje de vacíos o	de aire del esp	pécimen		W.	3.700	%		
revienia mien	ia	mient	A .	nia 1	ar Lili	enia	inia	.10	ia n	nia K
T - Augen	N°	Fecha de	Fecha de	Diámetro	Altura	Área	Lectura	F'c		

	Densida Porcenta	d aje de vacíos o	de aire del esp	pécimen		asper 1	2.739 3.700	gr/cm3 %		
	ia	a dient	a ·	onia	1	enia	inia	NA.	onia	nia KA
	N° Núcleo	Fecha de Elaboración	Fecha de Ensayo	Diámetro	Altura	Área	Lectura (kg/cm2)	F'c (kg/cm2)	= Jugenie	
Maria San	1 ,	23/11/2024	25/11/2024	10.18	6.72	81.3927	6580	80.84	1	
	210	23/11/2024	25/11/2024	10.17	6.7	81.23287	6610	81.37	inter	100
	3	23/11/2024	25/11/2024	10.15	6.71	80.91368	6710	82.93	a evice	
MAE	KA	K	AE .	KA	E Jan	MAE	I and	E . IN	WAE Just	
	OBSERV	ACIONES:	La muestra fue	e proporcion	ada por el s	solicitante.	illico	vienia	Rev. H.L.V. Ejec. H.L.D.	

AE Jugenieria Rev. H.L.V. Ejec. H.L.D. AE Jugenienia La muestra fue proporcionada por el solicitante. nieria KAE Jagenier genieria KAE Ing OBSERVACIONES: Agenieria KAE gag ia KAE Jugenieria KAE

Jugenierie MAE Jugenierie Historia Lazaro 1440 Milania (E) Willow Alforda Willow Alforda - Jugenieria KAE Jugenieria KAE Ju genieria KAE Jugenieria Jugenieria KAE Jugenieria

Jugenieria KA

n. aevieria K

Registro Indecopi Nº 028979-2021/DSD

AE Ing	Registro Indecopi N° 028979-202	Augenieum	
N. K.	KAE WAE WAE	WAE	004
PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PE
- 1009	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Ougen	
	CECILIA	4/2	
SOLICITA	: ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° : _	01 de 0
LIBICACIÓN	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	27/11/20

NAE Jugenieria NA ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

i oned		MTC E 514 - ASTM D 2726			
	MAE Jugente Jugen	Información de Muestra			
ienia	Sustitución del 15% de Arena Muestra: Chancada	ienia inia	Elaboración: _	Laboratorio	ionia
	% C.A.:5.53%	- Jugenie			
enia	A: Peso del espécimen seco en el aire	ionia	1247	gr.	ia KAL
	B: Peso en el aire del espécimen saturado o C: Peso del espécimen en agua	con superficie seca	1248 745	gr.	
mieria	P. Especifico de Bulk P. Especifico Aparente	Pe _m	2.479 2.479	gr/cm3 gr/cm3	AL KA
	Peso Unitario del agua	Pua	0.997	gr/cm3	
	Peso Unitario	Pu Pu	2.47	gr/cm3	A KAL
	OBSERVACIÓN:	ence Jugent			
onia K	La muestra fue tomada por pers	sonal técnico de laboratorio.	ionia K	Rev. H.L.\ Ejec. H.L.[d.
				Carley Juden	
ia V	ania King Kal	N. K	AL	War K	AL K

nia K

Jagenieria KAK Jagenieria KAK Jagenieria por persons

Jagenieria

MAE Jagenieria Viceor Alfonso Harrera Lazaro
INGENIERO CIVI.
REG CIP Nº 216087 Jugenieria WAE Jugeni WA - Jugenieria WAE Jugenieria WAE Jugenieria W AE Jugenieria KAE Jugenieri - Jugenieria KAE Jugenieria KAE Jugenieria genieria KAE Ingenieria KAE

Registro Indecopi Nº 028979-2021/DSD

KAE Ing	Registro Indecopi N° 028979-202	1/DSD journ	igenierio
PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° :(CC-EPF-PEU-07
N DE	CECILIA	TE . Juny	
SOLICITA	: ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	27/11/2024

WAE Ingenieria WA ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS **COMPACTADAS**

Información de Muestra

inter .		PACTADAS 14 - ASTM D 2726			
	MAE JAGENES JAGENES Informac	ción de Muestra			
movienia	Sustitución del 25% de Arena Muestra: Chancada	ia mieria	Elaboración:	Laboratorio	Mienia
KAT	% C.A. :5.53%				
	A: Peso del espécimen seco en el aire	ienia [1244	gr.	ia Kra
	B: Peso en el aire del espécimen saturado con superfiC: Peso del espécimen en agua	cie seca	1245 747	gr. A.Merkill	
10.1	WAL WAL	AL	A		
	P. Especifico de Bulk P. Especifico Aparente	Pe _m Pe _a	2.499 2.499	gr/cm3 gr/cm3	ionia
	Peso Unitario del agua	Pua	0.997	gr/cm3	
	Peso Unitario	Pu	2.49	gr/cm3	a sia
	OBSERVACIÓN : La muestra fue tomada por personal técnico	de laboratorio.			
ia	mieria mieria mieria	i enia	ieria N	Rev. H.L.\ Ejec. H.L.C	
	AE Jugen NAE Jugen NAE Jugen	VAE JUST	AE JUST	WAE Juden	
	mieria : ora	- mia	GENIE	I mia	mia

nia K

Registro Indecopi Nº 028979-2021/DSD

KAE Ing	Registro Indecopi N° 028979-202	1/DSD journ	genierio
PROYECTO	: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° : _(CC-EPF-PEU-08
ALD L	CECILIA	ZE Just	
SOLICITA	ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01
UBICACIÓN	: Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	27/11/2024

WAE Ingenieria WA ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

med		MTC E 514 - ASTM D 2726			
		Información de Muestra			
genievia	Sustitución del 35% de Arena Chancada Comparison del 35% de Arena Chancada	genienia gugenienia	Elaboración:	Laboratorio	a Angenieria
nia Ingenie	A: Peso del espécimen seco en el aire B: Peso en el aire del espécimen saturado C: Peso del espécimen en agua	con superficie seca	1246 1247 751	gr. gr. gr.	vieria KAL
enieria M	P. Especifico de Bulk P. Especifico Aparente	Pe _m Pe _a	2.511 2.511	gr/cm3 gr/cm3	MAL MARIENIA KA
Castevieni	Peso Unitario del agua Peso Unitario	Pu _a	0.997 2.50	gr/cm3 gr/cm3	nia KAE
ia KAE	OBSERVACIÓN : <u>La muestra fue tomada por pe</u>	ersonal técnico de laboratorio.	gagor La	Rev. Ejec.	H.L.V. H.L.D.
AE lago	AE Jugenta KAE Jugen KAE	May AE Juge	TOENIE	HAE Jus	KAE Jugent

nia K

ngenieria XAE gagenieria KAE Jugenieria Jugenieria KAE Jugenie Water Alfondo Morrera Lázaro
Indeniera Core
REG CH Nº 216087 Jugenieria NAE Jugeni genieria KAE Jugenieria KAE Jugenieria NA - Ingenieria NAE Ingenieria NAE Ingenieria AE Jagenieria KAE Jagenier

Registro Indecopi Nº 028979-2021/DSD

AE Ingeniería Registro Indec	рі N° 028979-2021/DSD		
THE REAL PROPERTY.	KAN K	11	K No.
101 March 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFA	TICO EN CALIENTE REGIS	TRO N° : CC	-EPF-PEU-01
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFA MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN		TRO N° : <u>CC</u>	-EPF-PEU-01
0.46		TRO N° : CC	-EPF-PEU-01
C 11/1/2 - 1 / 1/1/2 - 2 / 1/1/2 - 2 / 1/1/2	CANTERA SANTA	MENTE	-EPF-PEU-01 01 de 01

pratoric ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

inta		MTC E 514 - ASTM D 2726				
	Ingent Ingente Ingent	nformación de Muestra				
	Muestra: 4.5% de C.A.	unia in	Elaboración: _	Laboratorio	- K/2	10
mid.	A: Peso del espécimen seco en el aire	Chr. W.	1218	gr.		
	B: Peso en el aire del espécimen saturado co	on superficie seca	1226	gr.		
	C: Peso del espécimen en agua	Jugen Jugen	738	emegr.		
14	P. Especifico de Bulk	Pe _m	2.492	gr/cm3		
	P. Especifico Aparente	Pe _a	2.492	gr/cm3		ia
	Peso Unitario del agua	Pua Pua	0.997	gr/cm3		
	Peso Unitario	Pu [2.48	gr/cm3	N. K	
	OBSERVACIÓN : <u>La muestra fue tomada por perso</u>	nal técnico de laboratorio.		La Juger	Rev. H.L.V.	
enia N	nemieria emieria nemieria	Mieria Ka	mieria N	ieria V	ijec. H.L.D.	
AE '	WAE JUGGENAE JUGGENAE	Jugen AE Juge	AE Jage	WE!		
	ionia !	1/250 med	GEN	IE		

Registro Indecopi Nº 028979-2021/DSD

KAE Ingenie	ría Registro Indecopi Nº 028979-202	21/DSD	
WAR			
Innico	LA LANDA		10.
PROYECTO : EVALU	ACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° : C	C-EPF-PEU-02
MODIF	CADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° : C	C-EPF-PEU-02
MODIF	CADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° : _C	01 de 01

oratoric ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

mia	MTC E 514 - AS					
	agente Jagente Jagente Información d	e Muestra				
in	Muestra: 5.0% de C.A.		Elaboración:	Laboratorio	- 16 PM	- N
mia.	A: Peso del espécimen seco en el aire	10.1	1238	gr.		
	B: Peso en el aire del espécimen saturado con superficie sec	a	1240	gr.	and a	
	C: Peso del espécimen en agua	Jugen	742	gr.		
The Park	P. Especifico de Bulk	Pe _m	2.485	gr/cm3		
	P. Especifico Aparente	Pea	2.485	gr/cm3		ia
	Peso Unitario del agua	Pu _a	0.997	gr/cm3		
	Peso Unitario	Pu	2.48	gr/cm3	, K	
	OBSERVACIÓN : La muestra fue tomada por personal técnico de labor	ratorio.				
eria KAL	pieria Karia Karia Karia		onieria XI	ieria VE	tev. H.L.V. jec. H.L.D.	
AE Jay	AE Jagent LA LA LA MARIE JAGENTA	E Jag	AE POPE	MAE		Jagence
	ME TOWN		FOENIER			

Registro Indecopi Nº 028979-2021/DSD

	PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-03	
	- 104	MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	- Outlean		
		CECILIA	AL		
A TO	SOLICITA	: ELIAN RODRÍGUES VÁSQUEZ - JOSIAH VINCHALES SALAZAR	PÁGINA N° :	01 de 01	
	UBICACIÓN	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA:	25/11/2024	

oratoric ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

unid		MTC E 514 - ASTM D 2726				
	KAL KAL VA	Información de Muestra				
agenieria	Muestra: 5.5% de C.A.	enieria gugenieria	Elaboración: _	Laboratorio	ia hage	nieria
mia.	A: Peso del espécimen seco en el aire	Kar Ka	1247	gr.		
	B: Peso en el aire del espécimen saturado o	con superficie seca	1234	gr.	and a	
	C: Peso del espécimen en agua	Jugen Jugen	741	gr.		
1 1	P. Especifico de Bulk	Pe _m	2.530	gr/cm3		
	P. Especifico Aparente	Pea	2.530	gr/cm3	int	
	Peso Unitario del agua	Pu _a	0.997	gr/cm3		
	Peso Unitario	Pu	2.52	gr/cm3	nia KP	10.
	OBSERVACIÓN :					
	La muestra fue tomada por pers	sonal técnico de laboratorio.		Rev	H.L.V.	
enia	mieria ienia	a sonia	ieria	Ejed	H.L.D.	
	I Jugen DE Jugen	nigenil Juge	- Just	Me Ja		
ania V	ionia tora	Inia Karaja K	HOENI	CA .		JA K

AE Jugenienia

nia K

Registro Indecopi Nº 028979-2021/DSD

AE Ingenieria Registro Indecopi Nº 028979-	2021/DSD	
Juger - Juger		
MAL KAL KAL KAL	WAL	KAL
1000		
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° : _	CC-EPF-PEU-04
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° :	CC-EPF-PEU-04
10 10 to 10	REGISTRO N° : _	CC-EPF-PEU-04
MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° : _	01 de 01

aboratoric ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

mid		C E 514 - ASTM D 2726				
	igent Jugenie Jugenie Info	ormación de Muestra				
10	Muestra: 6.0% de C.A.	ania to	Elaboración:	Laboratorio	- 16 PM	10
mid.	A: Peso del espécimen seco en el aire	No.	1249	gr.		
	B: Peso en el aire del espécimen saturado con s	superficie seca	1250	gr.		
	C: Peso del espécimen en agua	agent Jugen	756	gr.		
	P. Especifico de Bulk	Pe _m	2.528	gr/cm3		
	P. Especifico Aparente	Pe _a	2.528	gr/cm3		ia Kr
	Peso Unitario del agua	Pu _a	0.997	gr/cm3		
	Peso Unitario	Pu	2.52	gr/cm3	W	
	OBSERVACIÓN : <u>La muestra fue tomada por personal</u>	técnico de laboratorio.	gagerier.	e Jugen	jeria juge	
enia him	emieria mieria memieria	mieria KA	onienia N	nua Ej	ev. H.L.V. jec. H.L.D.	
AE JAY	LAE JUGGENAE JUGGENAE JO	MAE Jud	THOENI	AE O		
	william miles	neg mea	(S)	57		

Registro Indecopi Nº 028979-2021/DSD

AE Ingenieria Registro Indecopi Nº 028979-	2021/DSD	
Juger - Juger		
MAL KAL KAL	KAL	KAL
1000		
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE	REGISTRO N° :	CC-EPF-PEU-05
PROYECTO: EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° :	CC-EPF-PEU-05
10 10 to 10	REGISTRO N° : _	CC-EPF-PEU-05
MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN CANTERA SANTA	REGISTRO N° : _	01 de 01

oratoric (A) ENSAYO PESO ESPECÍFICO Y Y PESO UNITARIO DE MEZCLAS ASFÁLTICAS

Información de Muestra

inte		MTC E 514 - ASTM D 2726				
	Ingente Ingente	nformación de Muestra				
	Muestra: 6.5% de C.A.	unia in	Elaboración:	Laboratorio	- K. W.	10.
mile.	A: Peso del espécimen seco en el aire	Chr. W.	1231	gr.		
	B: Peso en el aire del espécimen saturado co	on superficie seca	1232	gr.		
	C: Peso del espécimen en agua	Jugen Jugen	739	gr.		
14	P. Especifico de Bulk	Pe _m	2.494	gr/cm3		
	P. Especifico Aparente	Pe _a	2.494	gr/cm3		ia
	Peso Unitario del agua	Pu _a Og	0.997	gr/cm3		
	Peso Unitario	Pu [2.49	gr/cm3	K	
	OBSERVACIÓN : <u>La muestra fue tomada por perso</u>	nal técnico de laboratorio.		E Juger	ev. H.L.V.	
enia on	nevienia mieria nevienia	naioria Kr	mieria 🔪	nieria K	ec. H.L.D.	
AE	WAE JUST WAE JUST WAE	Jager AE Jag	AE Juge	WE !		
	willer : onch	1/2500 . mell	GEN	IE		

Registro Indecopi Nº 028979-2021/DSD

PROYECTO	EVALUACIÓN DE PROPIEDADES FÍSICO-MECÁNICAS DEL CONCRETO ASFÁLTICO EN	REGISTRO N°:	CC-EPF-ADH-01
- nage	CALIENTE MODIFICADO CON RESIDUOS DEL AGREGADO GRUESO RETRITURADO EN	PÁGINA N°:	01 de 01
L. Jane	CANTERA SANTA CECILIA	5 1004	- Jugar
SOLICITA :	ELIAN RODRÍGUEZ VÁSQUEZ - JOSIAH VINCHALES SALAZAR	- A A	L V
UBICACIÓN :	Distrito: Nuevo Chimbote - Provincia: Santa - Departamento: Ancash	FECHA: _	25/11/2024

ENSAYO DE ADHERENCIA ASTM D 1664 / MTC E 519

MUESTRA:

Mezcla Asfáltica - Diseño

Bitumen - Aditivo:

Mezcla: Agregado Grueso Bitumen (Cemento Asfaltico PEN 60/70)

Agregados Pétreos [proporciones]

100.0% 100.0% 1970) KAE Jagenieria Jugenieria KAE Jugenieria ° Agregado Grueso [piedra chancada Tmax. 3/4] Cantera Santa Cecilia

[Estimación Visual]

vo:		
do Grueso Bitumen (Cemento Asfaltico PEN 60	0/70)	KAL KAL
reos [proporciones] eso [piedra chancada Tmax. 3/4] Cecilia		100.0% 100.0%
sual]	ania Kr	A KAL WALL KAL
Descripcion - Ensayo	Resultado	a mailton acciented a new
Recubrimiento, %	100.0	E TOT E TOUT
Despremdimiento, % retenido	+ 95.0	WAL WAL WE
NES:	- outerior	ieria inia
Cumple con los requerimientos de las especificamuestra de agregados fue proporcionada p		Inger = Jugen = Ju
enieria Jugenieria	enia Nagenienia	Jugenieria Marieria Marieria
a newigned meniopia	oria Kara	CENTER

OBSERVACIONES:

propi AE Jugenieria AE Jugenieria aels

Augenienia

MAE Jugenienia

MAE Jugenienia La muestra de agregados fue proporcionada por el solicitante.

AE Jugenieria KAE Jugenieria KAE Jugenieria

vieria KAE Ingenieria ingeneria KAE Jugenieria KAE Jugenie genieria WAE Jugenieria WAE Jugenieria WAE Jugenieria WAE Jugenieria