UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"Zonificación geotécnica con fines de cimentación en la zona urbana del Distrito de Santa – Provincia del Santa – Departamento Ancash – 2022"

TESIS PARA OBTENER EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autores:

Bach. Guzmán Vásquez, Rogger Juan Bach. Montalván Gonzales, Katerinhe Paloma

Asesor:

Ms. Rivasplata Diaz, Julio César

DNI: 32770844

Código ORCID: 0000-0002-4180-9362

NUEVO CHIMBOTE – PERÚ 2025

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Zonificación Geotécnica con fines de Cimentación en la Zona
Urbana del Distrito de Santa – Provincia del Santa –

Departamento Ancash – 2022

Tesis Para Obtener El Título Profesional De Ingeniero Civil

REVISADO Y APROBADA POR:

Mg. Ing. Rivasplata Diaz, Julio César Asesor

DNI N°: 32770844

Código ORCID: 0000-0002-4180-9362

NUEVO CHIMBOTE – PERÚ 2025

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

Zonificación Geotécnica con fines de Cimentación en la Zona
Urbana del Distrito de Santa – Provincia del Santa –

Departamento Ancash – 2022

Revisado y Aprobada por:

ING. Villavicencio Gonzalez, Felipe Eleuterio

Presidente

DNI: 26673663

Código ORCID: 0000-0002-3500-2378

ING. Rivasplata Diaz, Julio César

Secretario

DNI: 32770844

Código ORCID: 0000-0002-4180-9362

Mg. Saavedra Vera, Janet Verónica

Integrante

DNI: 32964440

Código ORCID: 0000-0002-4195-982X

NUEVO CHIMBOTE – PERÚ

2025

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 30 días del mes de abril del año dos mil veinticinco, siendo las 12:00 horas, en el aula C1 del edificio de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución № 864-2024-UNS-CFI, con fecha 20.12.2024, integrado por los siguientes docentes: Ms. Felipe Eleuterio Villavicencio González (Presidente), Ms. Janet Verónica Saavedra Vera (Secretaria), Ms. Julio César Rivasplata Díaz (Integrante), Dra. Jenisse del Rocío Fernández Mantilla (Accesitaria) en base a la Resolución Decanal Nº 152-2025-UNS-FI se da inicio la sustentación de la Tesis titulada: "ZONIFICACIÓN GEOTÉCNICA CON FINES DE CIMENTACIÓN EN LA ZONA URBANA DEL DISTRITO DE SANTA - PROVINCIA DEL SANTA - DEPARATAMENTO DE ANCASH - 2022", presentado por los Bachilleres GUZMÁN VÁSQUEZ ROGGER JUAN con cód. N° 0201513029 y MONTALVAN GONZALES KATERINHE PALOMA con cód. N° 0201413037, quienes fueron asesorados por el docente Ms. Julio César Rivasplata Díaz según lo establece la T. Resolución Decanal № 450-2022-UNS-FI, de fecha 08.08.2022.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
MONTALVAN GONZALES KATERINHE PALOMA	17	BUENO

Siendo las 13:00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 30 de abril de 2025.

Ms. Felipe Eleuterio Villavicencio González

Presidente

Ms. Janet Verónica Saavedra Vera Secretaria

Ms. Julio César Rivasplata Díaz

Integrante

FACULTAD DE INGENIERÍA

Escuela Profesional de Ingeniería Civil - EPIC -

ACTA DE SUSTENTACIÓN INFORME FINAL DE TESIS

A los 30 días del mes de abril del año dos mil veinticinco, siendo las 12:00 horas, en el aula C1 del edificio de Ingeniería Civil, se instaló el Jurado Evaluador designado mediante T. Resolución Nº 864-2024-UNS-CFI, con fecha 20.12.2024, integrado por los siguientes docentes: Ms. Felipe Eleuterio Villavicencio González (Presidente), Ms. Janet Verónica Saavedra Vera (Secretaria), Ms. Julio César Rivasplata Díaz (Integrante), Dra. Jenisse del Rocío Fernández Mantilla (Accesitaria) en base a la Resolución Decanal Nº 152-2025-UNS-FI se da inicio la sustentación de la Tesis titulada: "ZONIFICACIÓN GEOTÉCNICA CON FINES DE CIMENTACIÓN EN LA ZONA URBANA DEL DISTRITO DE SANTA – PROVINCIA DEL SANTA – DEPARATAMENTO DE ANCASH - 2022", presentado por los Bachilleres GUZMÁN VÁSQUEZ ROGGER JUAN con cód. Nº 0201513029 y MONTALVAN GONZALES KATERINHE PALOMA con cód. Nº 0201413037, quienes fueron asesorados por el docente Ms. Julio César Rivasplata Díaz según lo establece la T. Resolución Decanal Nº 450-2022-UNS-FI, de fecha 08.08.2022.

El Jurado Evaluador, después de deliberar sobre aspectos relacionados con el trabajo, contenido y sustentación del mismo, y con las sugerencias pertinentes en concordancia con el Reglamento General para Obtener el Grado Académico de Bachiller y el Título Profesional en la Universidad Nacional del Santa, declaran:

BACHILLER	PROMEDIO VIGESIMAL	PONDERACIÓN
GUZMÁN VÁSQUEZ ROGGER JUAN	17	BUENIO

Siendo las 13:00 horas del mismo día, se dio por terminado el acto de sustentación, firmando la presente acta en señal de conformidad.

Nuevo Chimbote, 30 de abril de 2025.

Ms. Felipe Eleuterio Villavicencio González

Presidente

Ms. Janet Verónica Saavedra Vera Secretaria

Ms. Julio César Rivasplata Díaz

Integrante

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega: Katerinhe Paloma Montalván Gonzales

Título del ejercicio: Informe de tesis
Título de la entrega: Informe de tesis

Nombre del archivo: INFORME_DE_TESIS_MONTALVAN_28.05.25.pdf

Tamaño del archivo: 3.88M

Total páginas: 118

Total de palabras: 21,571

Total de caracteres: 99,916

Fecha de entrega: 01-jun.-2025 12:26p. m. (UTC-0500)

Identificador de la entrega: 2689764709

1. CAPITULO I: INTRODUCCIÓN

1.1. DESCRIPCIÓN DEL PROBLEMA

El distrito de Santa, ubicado en la provincia de Santa, en el departamento de Áncash, ha experimentado un crecimiento urbano significativo en las últimas décadas. Según el Instituto Nacional de Estadistica e Informática (INEI, 2021), la población del distrito ha aumentado un 35% en los últimos 10 años, pasando de aproximadamente 50,000 habitantes en 2011 a más de 67,000 habitantes en 2021. Este crecimiento ha llevado a una expansión de la actividad constructiva, tanto en el ámbito residencia con comercial. Sin embargo, este desarrollo ha ocurrido sin una planificación adecuada en términos de estudios geotécnicos, lo que ha generado riesgos para la estabilidad de las edificaciones.

La falta de una zonificación geotécnica precisa y actualizada en la zona urbana de Santa plantea serios problemas para las cimentaciones de las obras de infinestructura. De acuerdo con un estudio realizado por el Ministerio de Vivienda, Construcción y Saneamiento (MVCS, 2020), el 45% de las viviendas construidas en la región Áncash no cuentan con un estudio geotécnico previo. Esto expone a las construcciones a problemas como asentamientos diferenciales, agrictamientos en las estructuras y fallos en las cimentaciones. Estos riesgos no solo afectan la seguridad de las edificaciones, sino que también incrementan los costos de mantenimiento y reparación.

La ingeniería geotécnica es esencial para determinar las características del suelo, tales como su capacidad portante y comportamiento ante cargas. Sin embargo, en el caso del distrito de Santa, los estudios geotécnicos son limitados y no están distribuidos de manera homogénea en el área urbana. De acuerdo con un informe de la Universidad Nacional de Ingeniería (UNI, 2022), se ha identificado que solo el 18% de las zonas

1

Informe de tesis

INFORME DE ORIGINALIDAD

11%
INDICE DE SIMILITUD

1 1 %
FUENTES DE INTERNET

3%
PUBLICACIONES

5%
TRABAJOS DEL
ESTUDIANTE

FUENTE	S PRIMARIAS	
1	hdl.handle.net Fuente de Internet	4%
2	repositorio.uns.edu.pe Fuente de Internet	2%
3	www.slideshare.net Fuente de Internet	<1%
4	repositorio.udh.edu.pe Fuente de Internet	<1%
5	repositorio.ucv.edu.pe Fuente de Internet	<1%
6	repositorio.upao.edu.pe Fuente de Internet	<1%
7	repositorio.usanpedro.edu.pe Fuente de Internet	<1%
8	revistas.urp.edu.pe Fuente de Internet	<1%
9	alicia.concytec.gob.pe Fuente de Internet	<1%
10	www.santamarta.gov.co Fuente de Internet	<1%
11	repositorio.usmp.edu.pe Fuente de Internet	<1%

Dedicatorias

A Dios todopoderoso:

Por proporcionarme la fortaleza y los conocimientos y alcanzar cada una de mis logros a lo largo de la carrera profesional.

Por su amor y comprensión, por su incondicional sustento, su apoyo, impulso para apoyarme en cada paso de mi vida, a mi hijo

y esposo porque me dieron la

A mis padres, hijo y esposo:

tranquilidad y fueron el empuje que me faltaba para culminar este presente proyecto de investigación.

A mis docentes:

Por impartir en mí el conocimiento en la carrera profesional de ingeniería civil a lo largo de estos 5 años de la carrera profesional.

A Dios:

Por escuchar mis oraciones y ser mi guía en todo este recorrido de vida universitaria y así poder concluir mis estudios superiores satisfactoriamente.

A mis padres:

Por su amor y apoyo constante, que me ayudaron a concluir este proyecto de investigación.

A mis docentes:

Por brindarme conocimientos y experiencias suyas a lo largo de estos 5 años de mi carrera profesional de ingeniería civil.

Rogger Guzmán

Agradecimiento

Con singular aprecio expresamos nuestra especial referencia a todas las personas que han contribuido a plasmar de manera objetiva la presente investigación, pero a la vez es necesario destacar nuestro especial agradecimiento a los permitieron realizar la pesquisa necesaria para culminar con éxito la presente investigación; la misma que lleva por título: Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa – Provincia del Santa – departamento Ancash – 2022

Hacemos también extensivo nuestro agradecimiento a los miembros del jurado que han sabido orientarnos teniendo en cuenta las herramientas académicas y científicas para poder mejorar y culminar la investigación que constituye el informe de investigación cuya finalidad es obtener la licenciatura en Ingeniería Civil.

Atentamente,

Bach. Guzmán Vásquez Rogger Juan

Bach. Montalván Gonzales Katerinhe Paloma

Índice General

Índice G	General	IV
Índice de	e Figuras	V
Índice de	e Tablas	VI
Resumer	n VIII	
Abstract	t IX	
1.	CAPITULO I: INTRODUCCIÓN	1
1.1.	Descripción del problema	1
1.2.	Formulación del Problema	3
1.3.	Objetivos	3
1.4.	Formulación de la Hipótesis	3
1.5.	Justificación e Importancia	4
2.	CAPITULO II: MARCO TEORICO	6
2.1.	Antecedentes	6
2.1.	1 Internacionales	6
2.1	2 Nacionales	7
2.2.	Marco Conceptual	9
2.2.	1. zonificación Geotécnica	9
2.2.	1.1. Métodos de zonificación geotécnica	10
2.2.	1.2. Zonificación geotécnica y la seguridad estructural	11
2.2.	1.3. Relevancia de la zonificación geotécnica en Santa, Ancash	11
2.2.	2. Características Geotécnicas del Suelo	12
2.2.	2.1. Caracteristicas físicas del suelo.	12
2.2.	2.2. Propiedades mecánicas del suelo	15
2.2	3. Cimentación en zonas urbanas del Distrito de Santa	20
2.2.	4. Factores que influyen en la elección del tipo de cimentación en l	a zona urbana
del 1	Distrito de Santa	23
<i>3</i> .	CAPITULO III: METODOLOGIA	26
3.1.	Enfoque de Investigación	26
3.2.	Alcance de Investigación	26
3.3.	Método de Investigación	26
3.4.	Diseño de Investigación	27
3.5.	Población y Muestra	28

3.6.	Muestra	28
3.7.	Operacionacionalizacion de Variables	29
3.8.	Técnicas e Instrumentos de Recolección de Datos	33
4.	CAPITULO IV: RESULTADOS Y DISCUSIÓN	38
4.1.	Resultados	38
4.2.	Discusión	88
<i>5</i> .	CAPITULO V: CONCLUSIONES Y RECOMENDACIONES	93
<i>6</i> .	CAPITULO VI: REFERENCIAS BIBLIOGRÁFICAS	96
<i>7.</i>	CAPITULO VII: ANEXOS	100
	Índice de Figuras	
Figura 1.	Clasificación de suelos SUCS	13
Figura 2.	Esquema del método de la investigación realizada	27
Figura 3.	Mapa satelital del distrito de Santa	28
Figura 4.	Mapa satelital sectorizado del distrito de Santa para selección de la muestra	29
Figura 5.	Granulometría del suelo Zona 01	56
Figura 6.	Granulometría del suelo Zona 02	57
Figura 7.	Granulometría del suelo Zona 03	58
Figura 8.	Granulometría del suelo Zona 04	59
Figura 9.	Granulometria del suelo Zona 5	60
Figura 10	. Granulometría del suelo Zona 06	61
Figura 11	. Granulometría del suelo Zona 07	62
Figura 12	. Granulometría del suelo Zona 08	63
Figura 13	. Granulometría del suelo Zona 09	64
Figura 14	. Granulometria del suelo Zona 10	65
Figura 15	. Granulometría del suelo Zona 11	66
Figura 16	. Granulometria del suelo Zona 12	67
Figura 17	. Granulometría del suelo Zona 13	68
Figura 18	. Granulometría del suelo Zona 14	69
Figura 19	. Granulometría del suelo Zona 15	71
Figura 20	. Contenido de humedad del suelo del distrito de Santa	73
Figura 21	. Limite liquido del suelo del distrito de Santa	74
Figura 22	. Limite plástico del suelo del distrito de Santa	76
Figura 23	. Índice de Plasticidad del suelo del distrito de Santa	78
Figura 24	Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa	81

Figura 25. <i>I</i>	Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa-estrato 82
Figura 26. estrato 2	Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa- 83
Figura 27. estrato 3	Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa- 84
Figura 28.	Zonificación según el tipo de suelo del distrito de Santa87
Figura 29.	Zonificación según el tipo de suelo- calles del distrito de Santa88
	Índice de Tablas
Tabla 1.	Nomenclatura usada por SUCS para clasificación del suelo
Tabla 2.	Matriz de consistencia31
Tabla 3.	Matriz de operacionalización de variables
Tabla 4.	Determinación de la capacidad portante para zapata cuadrada zona 138
Tabla 5.	Determinación de la capacidad portante para cimiento corrido zona 138
Tabla 6.	Determinación de la capacidad portante para zapata cuadrada zona 239
Tabla 7.	Determinación de la capacidad portante para cimiento corrido zona 240
Tabla 8.	Determinación de la capacidad portante para zapata cuadrada zona 340
Tabla 9.	Determinación de la capacidad portante para cimiento corrido zona 341
Tabla 10.	Determinación de la capacidad portante para zapata cuadrada zona 441
Tabla 11.	Determinación de la capacidad portante para cimiento corrido zona 442
Tabla 12.	Determinación de la capacidad portante para zapata cuadrada zona 542
Tabla 13.	Determinación de la capacidad portante para cimiento corrido zona 543
Tabla 14.	Determinación de la capacidad portante para zapata cuadrada zona 643
Tabla 15.	Determinación de la capacidad portante para cimiento corrido zona 644
Tabla 16.	Determinación de la capacidad portante para zapata cuadrada zona 744
Tabla 17.	Determinación de la capacidad portante para cimiento corrido zona 745
Tabla 18.	Determinación de la capacidad portante para zapata cuadrada zona 845
Tabla 19.	Determinación de la capacidad portante para cimiento corrido zona 846
Tabla 20.	Determinación de la capacidad portante para zapata cuadrada zona 946
Tabla 21.	Determinación de la capacidad portante para cimiento corrido zona 947
Tabla 22.	Determinación de la capacidad portante para zapata cuadrada zona 1047
Tabla 23.	Determinación de la capacidad portante para cimiento corrido zona 1048
Tabla 24.	Determinación de la capacidad portante para zapata cuadrada zona 1148
Tabla 25.	Determinación de la capacidad portante para cimiento corrido zona 1149
Tabla 26.	Determinación de la capacidad portante para zapata cuadrada zona 1249
Tabla 27.	Determinación de la capacidad portante para cimiento corrido zona 1250

Tabla 28.	Determinación de la capacidad portante para zapata cuadrada zona 1350
Tabla 29.	Determinación de la capacidad portante para cimiento corrido zona 1351
Tabla 30.	Determinación de la capacidad portante para zapata cuadrada zona 1451
Tabla 31.	Determinación de la capacidad portante para cimiento corrido zona 1452
Tabla 32.	Determinación de la capacidad portante para zapata cuadrada zona 1552
Tabla 33.	Determinación de la capacidad portante para cimiento corrido zona 1553
Tabla 34.	Tipo de Cimentación en Función del Tipo de Suelo53
Tabla 35.	Análisis para Zonificación Geotécnica con Fines de Cimentación en función de Ø y 54
Tabla 36.	Clasificación del suelo según calicatas del distrito de Santa
Tabla 37.	Ensayo de Corte Directo

Resumen

La investigación aborda el estudio de la cimentación y la zonificación geotécnica en áreas urbanas del distrito de Santa, con énfasis en los factores que determinan el tipo de cimentación más adecuado para diferentes tipos de suelos y edificaciones. Se analizó la influencia de las cargas estructurales, la geología del área, la naturaleza del suelo, las características sísmicas y el tipo de edificación en la selección de la cimentación. Los tipos de suelos, como arcillosos, arenosos, limosos, rocosos y mixtos, se presentan con sus respectivas características físicas y mecánicas, las cuales influyen directamente en el diseño de cimentaciones que garantizan la estabilidad y seguridad de las estructuras. Esta investigación presenta un enfoque cuantitativo con nivel descriptivo correlacional.

Se examinaron los métodos de zonificación geotécnica, que incluyen estudios geológicos, pruebas de resistencia a la carga, y técnicas de análisis estadístico. Estos métodos permiten clasificar los terrenos encontrándose suelos SM, SP y SC con diferente capacidad portante las cuales varían de 0.33 kg/cm² y 0.90 0.33 kg/cm², facilitando la elección de la cimentación adecuada.

Palabras clave: cimentación, zonificación geotécnica, capacidad portante.

Abstract

The research addresses the study of foundations and geotechnical zoning in urban areas of the Santa district, with emphasis on the factors that determine the most suitable type of foundation for different types of soils and buildings. The influence of structural loads, the geology of the area, the nature of the soil, seismic characteristics and the type of building on the selection of the foundation was analyzed. The types of soils, such as clay, sandy, silty, rocky and mixed, are presented with their respective physical and mechanical characteristics, which directly influence the design of foundations that guarantee the stability and safety of the structures. This research presents a quantitative approach with a correlational descriptive level.

Geotechnical zoning methods were examined, including geological surveys, load resistance testing, and statistical analysis techniques. These methods allow the classification of soils, finding SM, SP and SC soils with different bearing capacity which vary from 0.33 kg/cm² and 0.90 to 0.33 kg/cm², facilitating the choice of the appropriate foundation. Research also focuses on soil mechanical properties, such as bearing capacity, compressibility and cohesion, essential elements for efficient foundation design.

Keywords: foundation, geotechnical zoning, bearing capacity.

CAPÍTULO I INTRODUCCIÓN

1. CAPITULO I: INTRODUCCIÓN

1.1. Descripción del problema

El distrito de Santa, ubicado en la provincia de Santa, en el departamento de Áncash, ha experimentado un crecimiento urbano significativo en las últimas décadas. Según el Instituto Nacional de Estadística e Informática (INEI, 2021), la población del distrito ha aumentado un 35% en los últimos 10 años, pasando de aproximadamente 50,000 habitantes en 2011 a más de 67,000 habitantes en 2021. Este crecimiento ha llevado a una expansión de la actividad constructiva, tanto en el ámbito residencial como comercial. Sin embargo, este desarrollo ha ocurrido sin una planificación adecuada en términos de estudios geotécnicos, lo que ha generado riesgos para la estabilidad de las edificaciones.

La falta de una zonificación geotécnica precisa y actualizada en la zona urbana de Santa plantea serios problemas para las cimentaciones de las obras de infraestructura. De acuerdo con un estudio realizado por el Ministerio de Vivienda, Construcción y Saneamiento (MVCS, 2020), el 45% de las viviendas construidas en la región Áncash no cuentan con un estudio geotécnico previo. Esto expone a las construcciones a problemas como asentamientos diferenciales, agrietamientos en las estructuras y fallos en las cimentaciones. Estos riesgos no solo afectan la seguridad de las edificaciones, sino que también incrementan los costos de mantenimiento y reparación.

La ingeniería geotécnica es esencial para determinar las características del suelo, tales como su capacidad portante y comportamiento ante cargas. Sin embargo, en el caso del distrito de Santa, los estudios geotécnicos son limitados y no están distribuidos de manera homogénea en el área urbana. De acuerdo con un informe de la Universidad Nacional de Ingeniería (UNI, 2022), se ha identificado que solo el 18% de las zonas urbanizadas en el distrito cuentan con información geotécnica suficiente para evaluar de

manera adecuada las condiciones del suelo para cimentaciones. Esta deficiencia de datos técnicos es un factor determinante que aumenta la vulnerabilidad de las construcciones ante posibles fallos geotécnicos.

Además, la falta de zonificación geotécnica influye en el uso inapropiado del suelo, lo que puede resultar en la construcción de edificaciones sobre terrenos inadecuados, como suelos de baja capacidad portante o áreas propensas a deslizamientos. Según un estudio realizado por la Autoridad Nacional del Agua (ANA, 2021), se ha identificado que el 28% de las zonas urbanas de Santa están ubicadas en áreas susceptibles a movimientos de tierra debido a la presencia de suelos inestables, lo que representa un riesgo adicional para las obras de infraestructura.

La implementación de una zonificación geotécnica en el distrito de Santa es, por lo tanto, una necesidad urgente. Este proceso permitirá clasificar las áreas urbanas según las características del suelo, optimizando los diseños de cimentaciones y asegurando la seguridad de las edificaciones. Un estudio realizado por el Ministerio de Energía y Minas (MINEM, 2022) en otras regiones del país demuestra que la implementación de zonificaciones geotécnicas reduce en un 25% los costos de mantenimiento de las infraestructuras a largo plazo, al garantizar la correcta elección de los métodos de cimentación y evitar problemas derivados de fallos geotécnicos.

Este estudio de zonificación geotécnica no solo contribuirá a la seguridad de las obras, sino que también permitirá un desarrollo urbano más ordenado y sostenible en Santa. A través de la identificación de las zonas con características geotécnicas desfavorables, se podrán tomar decisiones informadas que optimicen los recursos y mejoren la calidad de las construcciones, reduciendo así los riesgos y promoviendo un entorno más seguro y resiliente.

1.2. Formulación del Problema

1.2.1. Problema General:

- ¿Cuál es la zonificación geotécnica con fines de cimentación en la zona urbana del
 Distrito de Santa, Provincia del Santa, ¿Departamento Ancash - 2022?

1.2.2. Problemas Específicos:

- ¿Cuál es la zonificación geotécnica de los suelos en la zona urbana del distrito de Santa?
- ¿Cuál es la capacidad de carga admisible de los suelos encontrados en la zona urbana del distrito de Santa?

1.3. Objetivos

1.3.1. Objetivo General

 Analizar la zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia del Santa, Departamento Ancash - 2022.

1.3.2. Objetivos específicos

- Encontrar la capacidad admisible con fines de cimentación en la zona urbana del distrito de Santa.
- Comparar los tipos de suelos en la zona urbana del distrito de Santa.
- Estructurar las zonas geotécnicas en la zona urbana del distrito de Santa en base a la capacidad admisible y el tipo de suelo.

1.4. Formulación de la Hipótesis

La zonificación geotécnica con fines de cimentación en la zona urbana del Distrito de Santa es única.

.

1.5. Justificación e Importancia

En el Distrito de Santa, hay un crecimiento acelerado de la población y nuevas construcciones (viviendas, servicios públicos, comercios y edificaciones varias) específicamente en la zona urbana. Esto genera una mayor demanda de viviendas, comercios e infraestructuras. Sin embargo, el terreno en el que se construye debe ser evaluado correctamente para evitar problemas como hundimientos o fallos en las estructuras debido a las características del suelo. Por ello, es necesario que exista un estudio del suelo adecuado para que las edificaciones sean seguras y duraderas, es decir existe la necesidad de conocer la capacidad de los suelos y diseñar cimentaciones adecuadas a cada tipo de terreno. Sin un estudio geotécnico adecuado, las edificaciones pueden experimentar asentamientos diferenciales, que son movimientos no uniformes del terreno que pueden afectar la estabilidad y funcionalidad de las estructuras.

Con esta investigación se pretende ayudar a planificación y construcción de manera segura y eficiente, ya que con una zonificación geotécnica se puede saber que zonas son aptas para construir un determinado edificio según sus cargas y uso. Estos a su vez permitirá optimizar costos durante la construcción, mitigar riesgos geotécnicos y con ello impulsar el desarrollo económico y social del distrito.

CAPÍTULO II MARCO TEÓRICO

2. CAPITULO II: MARCO TEORICO

2.1. Antecedentes

2.1.1 Internacionales

Baltodano R. (2023), Con el propósito de aportar información complementaria para analizar y realizar diseños geotécnicos en Costa Rica, desarrolló la investigación aplicando métodos probabilísticos, en casos donde no se cuente con suficiente información para un análisis estadístico de los parámetros del suelo, se utilizó la estadística descriptiva para analizar los suelos existentes en el país. En cuanto al aspecto geotécnico, se utilizaron los mapas de zonificación del Código de Cimentaciones, mientras que para el clima se consultó el Atlas Climatológico del Instituto Meteorológico Nacional. Se tomaron 702 muestras de suelos Como resultado, se determinarán los valores promedio y la desviación estándar de diversos tipos de suelos en la zonificación realizada. La información geotécnica de los materiales fue obtenida a partir de campañas geológicas y estudios privados.

Palacio, et. al (2021), llevó a cabo un estudio en Valledupar ciudad perteneciente a Colombia. La meta del estudio fue clasificar las zonas geotécnicamente mediante la recolección de datos mediante ensayos realizados en laboratorios especializados para lo cual se consideró muestras seleccionadas por conveniencia. Los suelos identificados fueron SC, SM y GW, los cuales se hallaron en todas las comunas de la ciudad. Además, el nivel freático se localizó a una profundidad de 1,2 metros. concluyeron que la ciudad es capaz de soportar edificaciones de más de 10 niveles. En las zonas con mayores concentraciones de grava, se prevé que tendrán un impacto significativo en la expansión de las redes de acueducto y alcantarillado.

El estudio realizado por Pérez y Gómez (2020) en Bogotá, Colombia, evaluó cómo la falta de zonificación geotécnica había afectado la seguridad de las edificaciones en zonas propensas a deslizamientos. Los investigadores demostraron que la implementación de una

zonificación geotécnica basada en estudios de suelos, combinada con el análisis de factores climáticos y sísmicos, redujo los riesgos de fallos estructurales y mejoró la eficiencia en el diseño de cimentaciones. Este modelo de zonificación fue adoptado en otras ciudades de Colombia como medida preventiva.

De igual forma se tuvieron en cuenta algunas investigaciones nacionales como la elaborada por:

2.1.2 Nacionales

Peche G. (2024), en esta investigación el autor realizó una zonificación geotécnica del área de estudio, donde determinó los parámetros físicos, mecánicos y químicos del suelo. Entre estas tenemos; humedad, plasticidad, gravedad específica de los sólidos y tipo de suelo (SUCS). Se encontró suelos finos tales como CL, CL-ML (0.80 m, 1.20) pero a partir 1.50 m descubrió SC, SM, SM-SC. Se realizó el ensayo SPT in situ. Por otro lado, la capacidad portante admisible fue de:

- 0.29 kg/cm² a 0.84 kg/cm² cuando la profundidad tiene 0.80 m,
- 0.40 kg/cm² a1.58 kg/cm²; a 1.20 m,
- 0.53 kg/cm² a 3.11 kg/cm²; a 1.50 m,
- 0.72 kg/cm² a 3.20 kg/cm². a 2.00 m,

En cuanto a las propiedades químicas el ph es alcalino (< 7) para los valores de sulfatos que presentaron los suelos fue de 0.096 % hasta 0.198 %.

Hernández M. & Vega R. (2023), elaboraron un informe geotécnico a partir de una investigación sobre un análisis a detalle de soluciones geotécnicas desarrolladas para los fundamentos de cimentación de las 07 torres del complejo de la Villa Panamericana. De las cuales tres son de 19 pisos y el resto de 20 pisos, ubicados en el distrito de Villa el Salvador, Lima, Perú. Este proyecto enfrentó retos estructurales únicos, puesto que, los suelos son de

origen eólico. Él trabajó se desarrolló a través de una colaboración entre empresas especialistas en geotecnia. Los resultados arrojaron la existencia de arenas finas limpias de mala gradación, poco húmedos y con un bajo porcentaje de finos. Estos suelos, clasificados como tipo SP. De las diversas soluciones evaluadas para los problemas del suelo de cimentación, se optó por cambiar el suelo inadecuado por un relleno de concreto hidráulico con una profundidad de 3 metros, sobre el cual se apoya la placa de cimentación rígida (1 metro de espesor).

Diego Cashpa, (2022), quien llevó a cabo una investigación en el Asentamiento Humano Nuevo Moro, perteneciente al distrito de Moro, cuyo fin era observar las propiedades físicas y mecánicas del suelo juntamente con el comportamiento de este para luego realizar el diseño de cimentaciones superficiales en este sector, con esto busca contribuir al bienestar económico, la sostenibilidad ambiental y la equidad social, dado que las cimentaciones superficiales son las más comunes en la construcción debido a su costo más económico. Empleó un diseño de investigación no experimental y descriptivo, como se pudo observar es una investigación del tipo aplicada. De los resultados se pudo conocer que el suelo es una arena bien graduada correspondiéndole una clasificación según SUCS de SW y SW-SM.

Tarrillo, D. (2021), investigó los suelos de fundación en la zona oeste del distrito de Chota (sectores 1 y 5) para conocer tanto las características físicas asi como, las características mecánicas y con ello, poder desarrollar un mapa de zonificación según la capacidad portante. Esta investigación fue de un alcance descriptivo y un enfoque cuantitativo. Se empleo el STP, para el análisis de los datos se trabajó con 18 calicatas. Como resultados se encontró que la capacidad portante del suelo tiene una variación de

0.59 kg/cm2 y 1.15 kg/cm2 además se idéntico la presencia de suelos limos inorgánicos de mediana plasticidad (ML) y arcillas limosas inorgánicas de mediana plasticidad (CL) en cuanto a la humedad es de 22.9%.

En su investigación realizada en Trujillo, la ciudad más grande del norte del Perú, Vásquez (2021) analizó las condiciones geotécnicas de la zona urbana, revelando que el 40% de los terrenos urbanos presentan características geotécnicas desfavorables para la cimentación de edificaciones. El estudio propuso un modelo de zonificación geotécnica para identificar áreas de riesgo y promover la construcción en suelos con mayor capacidad portante, lo que contribuyó a la reducción de fallos en la infraestructura y aumentó la seguridad de las obras de construcción.

Astocondor D. (2020), desarrolló un estudio cuyo fin fue investigar la zonificación de los suelos determinar el tipo de cimentación superficial en el sector Pómape, distrito de Monsefú - Chiclayo. Fue de tipo aplicativa - descriptivo. Los resultados muestran que existe contenido de humedad bastante alto, debido al nivel freático alto. Los suelos en este sector son; arcillas de baja plasticidad (CL) y arenas arcillosas (SC) en un 38.89% en ambos casos, y con un 22.22% se encontró las arcillas de alta plasticidad (CH). solo el 22.22% de las muestras son perjudiciales y el resto son no perjudiciales.

2.2. Marco Conceptual

2.2.1. zonificación Geotécnica

La zonificación geotécnica es un proceso clave en la ingeniería civil que consiste en segmentar un área en distintas zonas homogéneas basadas en las propiedades geotécnicas del terreno. Este enfoque permite una evaluación más detallada de los riesgos

y características del suelo, lo que facilita la planificación urbana, el diseño de las cimentaciones y la reducción.(Quintana & Soffietti, 2020).

Para llevar a cabo una zonificación geotécnica adecuada, es necesario considerar una serie de factores, como la geología regional, la geomorfología, la litología, la tectónica, la meteorización, la erosión y la actividad humana. Estos factores influyen en la distribución y las propiedades de los suelos y rocas en el área de estudio y, por lo tanto, en la respuesta del terreno ante cargas externas (Gómez, 2020). Existen diversas metodologías y técnicas para llevar a cabo la zonificación geotécnica, que van desde estudios geológicos y geofísicos hasta ensayos de laboratorio y técnicas de teledetección. Estas técnicas se utilizan para caracterizar el subsuelo y determinar parámetros geotécnicos clave, como la capacidad portante del suelo, la compresibilidad, la permeabilidad, la erosión, la expansión y la contracción del suelo, entre otros (Intriago & Pacheco, 2022).

2.2.1.1.Métodos de zonificación geotécnica. Los métodos utilizados para la zonificación geotécnica se basan en el análisis de muestras del suelo, estudios de perforación, pruebas de laboratorio y técnicas de análisis estadístico (Das, 2015). Estos métodos permiten la clasificación de los terrenos en zonas de diferente capacidad portante entre estos tenemos:

- Zonificación basada en estudios geológicos
- Zonificación con base en la resistencia a la carga
- Zonificación por tipo de terreno

2.2.1.2.Zonificación geotécnica y la seguridad estructural. El concepto de seguridad estructural se refiere a la capacidad de una construcción para resistir las cargas externas sin sufrir daños significativos. La zonificación geotécnica contribuye a la seguridad estructural al proporcionar información precisa sobre las propiedades del suelo, lo que permite seleccionar los métodos de cimentación adecuados. En Bogotá, Colombia, Pérez y Gómez (2020) demostraron que la implementación de una zonificación geotécnica, combinada con el análisis sísmico y la evaluación de factores climáticos, permitió mitigar el riesgo de desastres naturales como deslizamientos y terremotos. El estudio de Pérez y Gómez (2020) en Bogotá subraya que la zonificación geotécnica no solo mejora la seguridad de las edificaciones al reducir el riesgo de colapsos, sino que también optimiza los recursos al permitir el diseño adecuado de las cimentaciones. Esto demuestra la importancia de integrar estudios geotécnicos en la planificación urbana para garantizar la resiliencia y durabilidad de las infraestructuras.

2.2.1.3.Relevancia de la zonificación geotécnica en Santa, Ancash. En el caso específico del distrito de Santa, la implementación de una zonificación geotécnica resulta crucial debido a su crecimiento poblacional acelerado y la expansión urbana desordenada. Según Vásquez (2021), las zonas urbanas de Santa presentan suelos de variada calidad geotécnica, lo que podría provocar fallos en (Pérez M. &., 2020) las cimentaciones si no se toma en cuenta esta variabilidad. La ausencia de estudios geotécnicos previos en muchas áreas del distrito ha llevado a una construcción en suelos inadecuados, lo que aumenta los costos y riesgos de las edificaciones.

Con base en la información geotécnica obtenida a través de la zonificación, es posible clasificar las áreas del distrito según su aptitud para la construcción y definir qué tipos de cimentaciones son más adecuadas. La propuesta de zonificación geotécnica para Santa, similar a los estudios realizados en otras ciudades, contribuirá a mejorar la seguridad

de las construcciones, optimizar el uso de los recursos y reducir los riesgos geotécnicos (Castillo, 2019).

2.2.2. Características Geotécnicas del Suelo

Analizar geotécnicamente el suelo es elemental para determinar el tipo de cimentación más conveniente para un determinado sector. Las características que se estudian son:

2.2.2.1.Caracteristicas físicas del suelo. El comportamiento del suelo está sujeto a varios factores como lo son la composición granulometría, la densidad, plasticidad, la humedad, la cohesión entre otros (Hernández, 2023)

La clasificación de los suelos es un paso crucial en la zonificación geotécnica, ya que permite identificar las propiedades y el comportamiento de los suelos bajo cargas. El Sistema Unificado de Clasificación de Suelos (SUCS), propuesto por la American Society for Testing and Materials (ASTM), es uno de los sistemas más utilizados para clasificar suelos. Este sistema divide los suelos en dos grandes grupos: suelos finos y suelos gruesos. Cada grupo se clasifica con base en su granulometría y propiedades mecánicas.

- Suelos finos: Son aquellos con más del 50% de partículas menores de 0.075 mm (como arcillas y limos). Estos suelos tienen una plasticidad significativa y son propensos a la expansión y la compresibilidad. Los suelos arcillosos son un ejemplo clásico de suelos finos, que requieren una evaluación cuidadosa para la selección de cimentaciones, debido a su alta cohesión y la tendencia a sufrir asentamientos diferenciales bajo cargas.
- **Suelos gruesos:** Se refieren a aquellos con más del 50% de partículas mayores de 0.075 mm, como arenas y gravas. Estos suelos son generalmente más estables y tienen una mayor capacidad de carga, pero pueden ser susceptibles a la erosión y la

saturación si no se gestionan adecuadamente en condiciones de agua subterránea elevada.

El SUCS también establece una subclasificación más detallada, como el uso de símbolos como GW (gravel well-graded) para gravas bien graduadas y CL (clay low plasticity) para arcillas de baja plasticidad, lo que permite un análisis más preciso de los suelos en función de sus propiedades mecánicas (Das, 2015).

Figura 1. Clasificación de suelos SUCS

Nota: adaptación del SUCS

El SUCS también establece una subclasificación más detallada, como el uso de símbolos como W (well-graded) para bien graduadas y P (Poor-graded) para mala gradación términos usados para suelos gruesos. En los suelos finos utiliza L (baja plasticidad) y H (alta plasticidad), lo que permite un análisis más preciso de los suelos en función de sus propiedades mecánicas (Das, 2015).

Tamaño de Partículas

Arcillas (CU ≤ 0.002 mm): Son suelos finos, muy plásticos y cohesivos. Estos suelos tienen una baja permeabilidad y pueden experimentar grandes asentamientos debido a la compresión del agua entre las partículas usa el símbolo C (Clay). (Das, 2015)

Limosa (0.002 mm < CU < 0.075 mm): Son suelos con partículas finas, pero menos plásticos que las arcillas. Aunque tienen propiedades similares a las arcillas, son menos cohesivos usa el símbolo M (Salt) el SUCS utiliza M para evitar confusión. (Das, 2015)

Arenas (0.075 mm < $CU \le 2$ mm): Son suelos más gruesos, con una mayor capacidad de drenaje y mayor estabilidad bajo carga. Las arenas pueden clasificarse como finas o gruesas dependiendo del tamaño de sus partículas, usa el símbolo S(Sand). (Das, 2015)

Gravas (2 mm < CU ≤ 75 mm): Son suelos gruesos con partículas más grandes, que proporcionan una alta capacidad de carga y son ideales para cimentaciones superficiales, ya que permiten un buen drenaje, adopta el símbolo G (gravel) (Das, 2015)

Tabla 1. Nomenclatura usada por SUCS para clasificación del suelo

Letra	Significado	Descripción	Aplica para:
L	Baja plasticidad	Suelos finos con partículas pequeñas, entre arcilla y arena	Suelos
Н	Alta plasticidad	Indica suelos con alta capacidad de deformación sin ruptura, como arcillas o limos con gran expansión	finos
W	Buena graduación	Suelos gruesos, generalmente con duación alta capacidad portante y estabilidad	Suelos gruesos

Mala graduación P (Poor) o Permeabilidad

Suelos con mala distribución de partículas o baja permeabilidad

Nota: adaptado apartir del SUCS (ASTM, 2017)

La **humedad de un suelo** se determina mediante el **contenido de humedad** en los suelos se refiere a la cantidad de agua presente en el suelo en relación con su peso seco. Es una propiedad muy importante en la ingeniería geotécnica, ya que influye en una variedad de características y comportamientos del suelo, como su capacidad de carga, la plasticidad, la compresibilidad, la estabilidad y el comportamiento ante cambios en las condiciones ambientales.

Contenido de humedad (%) = ((Peso del suelo seco /Peso del agua)) ×100

Donde:

Peso del agua es la diferencia entre el peso húmedo del suelo y su peso seco.

Peso del suelo seco es el peso del suelo después de haber sido secado a una temperatura específica (generalmente a 105 °C).

2.2.2.2. Propiedades mecánicas del suelo. La determinación del comportamiento del terreno bajo cargas es crucial para el diseño de cimentaciones seguras. En el contexto de las construcciones, la cimentación es la parte crítica ya que transfiere las cargas de una estructura al suelo (Ibarra, 2019). Las propiedades mecánicas del suelo son determinantes, tales como: la Capacidad Portante, Compresibilidad, Cohesión, Ángulo De Fricción, Densidad Relativa, Plasticidad, Resistencia al Corte (τ) y Esfuerzo Cortante Máximo, Resistencia a la Licuefacción, Módulo de Elasticidad (Ε), entre otros.

La **capacidad portante del suelo** es la máxima presión que puede soportar sin que se produzcan fallos o asentamientos excesivos que comprometan la estabilidad de la estructura. Existen diversos métodos para determinarla, entre ellos:

- Método de Terzaghi y Peck (1948)

Este método es uno de los más utilizados para determinar la capacidad portante de los suelos superficiales. Se basa en fórmulas que consideran las características del terreno, como la cohesión, el ángulo de fricción interna, la profundidad de la cimentación y el tipo de suelo. El cálculo incluye un factor de seguridad que depende del tipo de cimentación y de las condiciones del terreno. En suelos arcillosos o cohesivos, como los comunes en el Distrito de Santa, el método de Terzaghi y Peck proporciona estimaciones precisas de la capacidad portante, pero es necesario considerar la posible influencia de factores como la humedad y la plasticidad (Das, 2015).

$$q_{uit}=cNc+\sigma'Nq+0.5\gamma BN\gamma$$

Donde:

qult es la capacidad portante última.

C es la cohesión del suelo.

Nc, Nq, Nγ son factores dependientes del tipo de suelo y la geometría de la cimentación.

 σ' es la presión efectiva en la base de la cimentación.

 Γ es el peso unitario del suelo.

B es el ancho de la cimentación.

- Teoría de Meyerhof sobre Capacidad Portante

La teoría de Meyerhof (1963) amplió y refinó los conceptos propuestos por Terzaghi. Meyerhof desarrolló una fórmula más precisa para la capacidad portante

de cimentaciones superficiales, que tiene en cuenta factores adicionales como el efecto de la cimentación sobre los estratos de suelo subyacentes y la forma de la cimentación. Esta teoría introduce el uso de factores de forma que modifican la capacidad portante según el tipo y las dimensiones de la base de la cimentación, considerando diferentes geometrías (cuadrada, rectangular, circular). La ecuación de Meyerhof es similar a la de Terzaghi, pero se ajusta a diferentes condiciones de carga y forma:

$$q_{ult}=cNc+\sigma'Nq+0.5\gamma BN\gamma\times F$$

Donde F es un factor de forma que depende de las dimensiones de la cimentación. Este factor es crítico en la evaluación de cimentaciones más complejas, como las rectangulares o las circulares, y tiene en cuenta la influencia de la geometría sobre la distribución de cargas (Plascencia & Obregón, 2021).

- Ensayo de Corte Directo

El ensayo de corte directo es otro de los métodos más utilizados para medir la cohesión (c) y el ángulo de fricción interna (φ) de los suelos. En este ensayo, una muestra de suelo se divide en dos mitades, a las cuales se les aplica una carga de corte hasta que una de las mitades se deslice sobre la otra. Los resultados del ensayo se utilizan para calcular la resistencia al corte de los suelos, que es clave para evaluar su estabilidad bajo cargas (Ramos & Rosso, 2023).

Ángulo de Fricción y la Cohesión

El ángulo de fricción interna y la cohesión son dos parámetros fundamentales que afectan la capacidad portante de un suelo, especialmente en suelos granulares y cohesivos.

Ángulo de fricción interna (φ): Se determina generalmente a través de pruebas de corte directo, ensayos triaxiales o mediante la fórmula de Coulomb, que relaciona la fricción interna del suelo con las fuerzas aplicadas. Este ángulo representa la resistencia al deslizamiento entre partículas del suelo, y es especialmente relevante en suelos arenosos y gravosos. En suelos de baja cohesión, como los arenosos, este ángulo tiene un valor significativo para calcular la capacidad portante superficial (Terzaghi K. P., 1996)

$$\tau = c + \sigma * tan(\phi)$$

Donde:

τ es el esfuerzo de corte en el punto de falla,

c es la cohesión,

 σ es el esfuerzo normal,

φ es el ángulo de fricción interna

Para determinar el ángulo de fricción de un suelo, se puede realizar un ensayo triaxial o un ensayo de corte directo. Estos ensayos consisten en aplicar una carga en una muestra de suelo y medir el esfuerzo de corte necesario para provocar el deslizamiento de las partículas. A partir de estos datos, se calcula el valor del ángulo de fricción utilizando la relación empírica entre la resistencia al corte y la normalidad de las fuerzas actuantes.

Cohesión (c): La cohesión es la fuerza que mantiene unidas las partículas del suelo debido a las fuerzas intermoleculares. En suelos cohesivos como las arcillas, la cohesión es crucial para determinar la capacidad portante. La cohesión se determina a través de ensayos de corte directo o ensayos triaxiales, donde se mide la resistencia al corte en función de la presión normal. La cohesión es especialmente relevante en suelos arcillosos del Distrito de Santa, ya que la alta cohesión de estos

suelos puede proporcionar resistencia adicional a los asentamientos. (Schnaid, 2010)

La plasticidad de los suelos está relacionada con su capacidad para comportarse de manera plástica cuando se somete a una deformación. Este comportamiento es más pronunciado en suelos finos, como las arcillas, que tienen partículas pequeñas y una alta capacidad para retener agua, lo que permite que el suelo se deforme sin romperse (Terzaghi K. P., 1996). En el estudio geotécnico, la plasticidad se evalúa a través de los límites de Atterberg: el límite líquido (LL), el límite plástico (PL) y el índice de plasticidad (IP), los cuales permiten clasificar los suelos y predecir su comportamiento frente a variaciones de humedad.

Límite Líquido (LL): El límite líquido es la cantidad de humedad que un suelo puede alcanzar antes de que cambie de estado líquido a plástico. Este límite es relevante porque establece el contenido de agua más alto en el que el suelo todavía fluye como un líquido. Para determinar el LL, se utiliza la prueba de Casagrande, que consiste en medir la cantidad de humedad en la que el suelo deja de fluir y se vuelve capaz de formar una masa plástica sin deformarse más al ser agitada (Terzaghi, Peck, & Mesri, 1996).

Límite Plástico (PL): El límite plástico es el contenido de humedad en el cual un suelo pasa de ser plástico a ser semiplástico, es decir, en este punto el suelo deja de ser deformable en hilos finos. Se determina mediante la prueba de hilos, en la cual el suelo se trabaja hasta formar un hilo delgado que se rompe cuando el contenido de humedad es suficientemente bajo (Das, 2016).

Índice de Plasticidad (IP): El índice de plasticidad es la diferencia entre el límite líquido y el límite plástico, es decir:

IP=LL-PL

19

- Influencia de la plasticidad en el comportamiento del suelo

La plasticidad afecta directamente el comportamiento de los suelos en condiciones de carga, especialmente en términos de asentamientos y expansión. Los suelos con alta plasticidad (como las arcillas) pueden experimentar expansión cuando absorben agua (como ocurre con las arcillas expansivas), mientras que cuando se secan, pueden contraerse, lo que causa movimientos del terreno que afectan las estructuras.

Comportamiento ante cargas: Los suelos plásticos pueden soportar mayores deformaciones antes de romperse, pero también pueden ser más susceptibles a la compresión y al asentamiento.

Efectos en la cimentación: Los suelos con alta plasticidad pueden presentar problemas en la cimentación debido a los cambios de volumen que experimentan con la variación del contenido de humedad, lo que puede ocasionar asentamientos no uniformes y la desestabilización de las estructuras.

Comportamiento frente a cambios de humedad: En suelos como las arcillas, la plasticidad influye en cómo el suelo responde a cambios en la humedad. En condiciones de alta humedad, estos suelos pueden volverse más plásticos y expandirse, mientras que, en condiciones de baja humedad, se contraen, lo que puede afectar la estabilidad de las estructuras

2.2.3. Cimentación en zonas urbanas del Distrito de Santa

Se sabe que la cimentación es el conjunto de componentes que permiten transferir las cargas de la estructura al suelo (Jorge, 2016). Se divide principalmente en dos tipos:

- Superficial (cuando se encuentra cerca de la capa superficial del terreno) y,
- cimentación media (se utiliza para proporcionar soporte y estabilidad) y,

 Profunda (cuando es necesario llegar a capas más profundas debido a la insuficiencia de la capacidad de carga en las capas superiores).

La elección del tipo de cimentación va a depender de las características físicas y mecánicas del suelo, la topografía entre otros.

2.2.3.1. Tipos de cimentaciones superficiales

- Zapatas aisladas: Las zapatas aisladas son elementos de cimentación superficial que distribuyen la carga de una estructura hacia el suelo subyacente de manera uniforme, reduciendo así la presión sobre el terreno. Su principal función es proporcionar estabilidad y resistencia a la estructura, asegurando que no se produzcan asentamientos excesivos ni fallas catastróficas (Guillén, 2023). Las zapatas aisladas se diseñan para distribuir la carga de la estructura de manera uniforme sobre el suelo, minimizando así los asentamientos diferenciales y garantizando la estabilidad global de la construcción. La dimensión y la forma de las zapatas se determinan considerando la carga vertical, la capacidad portante del suelo y otros factores como la geometría y la disposición de la estructura (D. Sánchez, 2023).
- Zapatas combinadas: Se emplean cuando dos o más columnas están muy cercanas entre sí. En lugar de colocar zapatas aisladas, se construye una base común que las une (González, 2020).
- Zapatas corridas: Las zapatas corridas son elementos de cimentación superficial que distribuyen las cargas de la estructura de manera uniforme sobre el suelo de fundación. Esto es fundamental en zonas urbanas donde las cargas de las edificaciones son variables y distribuidas de manera irregular (Guillén, 2023).La eficacia de las zapatas corridas depende en gran medida de la capacidad portante

del suelo en el que se apoyan. La investigación geotécnica previa es primordial para evaluar la resistencia y las características del suelo en la zona de estudio, lo cual permitirá dimensionar adecuadamente las zapatas y garantizar su estabilidad (Ortiz & Quintero, 2020).

Plateas o losas de cimentación: La cimentación por plateas es una técnica comúnmente utilizada en ingeniería civil para soportar estructuras en suelos que presentan cargas distribuidas de manera uniforme. Esta técnica es especialmente relevante en zonas urbanas donde las condiciones del suelo varían significativamente y donde la disponibilidad de espacio para cimentaciones profundas puede ser limitada (Padilla, 2020).

2.2.3.2 Tipos de cimentación profundas

- Pilotes: La cimentación por pilotes es una técnica ampliamente utilizada en la ingeniería geotécnica para soportar estructuras en suelos que presentan características desfavorables para la cimentación convencional (Plascencia & Obregón, 2021). En zonas urbanas, es común encontrar suelos con baja capacidad portante debido a su composición y a la presencia de cargas muertas y vivas. Los pilotes permiten transmitir las cargas de la estructura a capas de suelo más profundas que poseen una mayor capacidad portante, evitando así el hundimiento diferencial y garantizando la estabilidad de la estructura (Castillo, 2019).
- Micropilotes: Son similares a los pilotes, pero tienen un diámetro mucho más pequeño (generalmente menor a 300 mm). Se utilizan en espacios reducidos o cuando se necesita una cimentación profunda en suelos con características geotécnicas complejas. Los micropilotes son ideales para obras de rehabilitación o cuando se requiere perforación en áreas de difícil acceso (Braja M. Das, 2010).

- **Pozos o Caissons:** Son estructuras de gran diámetro que se excavan en el terreno hasta alcanzar un estrato firme o profundo. Estos pozos se utilizan principalmente en la construcción de grandes puentes, edificios o estructuras de gran altura, donde se requiere una cimentación profunda para soportar las cargas. Una vez excavados, los pozos se llenan de concreto para formar una base sólida (Budhu, 2011).

2.2.4. Factores que influyen en la elección del tipo de cimentación en la zona urbana del Distrito de Santa

El tipo de suelo presente en la zona es uno de los factores más críticos a considerar al elegir el tipo de cimentación. Suelos con diferentes características de resistencia, compresibilidad, expansividad, y capacidad de carga influirán en la selección de la cimentación más adecuada. Por ejemplo, suelos blandos o suelos con alta compresibilidad requieren cimentaciones profundas como pilotes o losas de cimentación reforzada (Chumacero & Cubas, 2021). La magnitud y distribución de las cargas que la estructura va a soportar son determinantes en la elección del tipo de cimentación. Edificios altos, estructuras pesadas o aquellas con cargas concentradas requerirán cimentaciones más robustas y profundas para garantizar la estabilidad y seguridad de la estructura (Tobo & Alexander, 2023).

La profundidad del nivel freático y su variabilidad estacional influye en la elección del tipo de cimentación debido a que la presencia de agua en el suelo puede afectar la capacidad portante y la estabilidad de las cimentaciones, especialmente en suelos susceptibles a la erosión o con problemas de expansividad (J. R. Aquino & Ticse, 2024). En áreas sísmicas como la provincia de Ancash, es importante considerar la capacidad de la cimentación para resistir las fuerzas sísmicas. La elección del tipo de cimentación debe

tener en cuenta la capacidad de disipación de energía y la resistencia a la deformación para garantizar la seguridad estructural durante eventos sísmicos (Ilieva, 2020).

Factores como restricciones geotécnicas locales, normativas ambientales y regulaciones de construcción influirían en la selección del tipo de cimentación. Es importante considerar estas restricciones para garantizar el cumplimiento de los estándares de seguridad y protección ambiental (Hinestroza, 2023). Finalmente, el costo económico y la disponibilidad de materiales también influyen en la elección del tipo de cimentación. Es importante buscar un equilibrio entre la eficiencia técnica y la viabilidad económica para seleccionar la opción más adecuada (Rivas & Rivas, 2023).

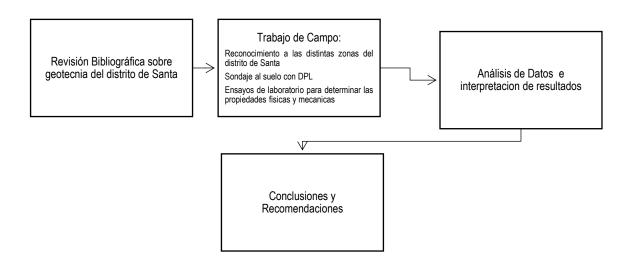
CAPÍTULO III METODOLOGÍA

3. CAPITULO III: METODOLOGIA

3.1. Enfoque de Investigación

Este estudio adoptó un enfoque cuantitativo, ya que se establecieron objetivos precisos y específicos, además de ello se buscó establecer una relación entre la zonificación geotécnica (V.I) y la cimentación de la zona urbana del distrito de Santa (V.D). Es decir, que se analizaron las condiciones geotécnicas del distrito y se examinó como afectan el tipo y la calidad de las cimentaciones utilizadas en esa área y para ello, fue preciso analizar los datos recolectados mediante la estadística. (Hernández Sampieri, 2017)

3.2. Alcance de Investigación


Se realizó una investigación Descriptiva, ya que el estudio tiene como objetivo principal observar, analizar y detallar, se orientó en describir detalladamente la zonificación geotécnica en base a la capacidad admisible y tipo de suelo en la zona urbana del distrito de Santa, encontrar la capacidad admisible con fines de cimentación y comparar los tipos de suelos de la zona.

3.3. Método de Investigación

En cuanto al método aplicado para esta investigación fue necesario estructurarlo de manera que se pueda cumplir con los objetivos planteados, así como garantizar la fiabilidad de los resultados y proporcionar información detallada sobre las características geotécnicas de la zona de estudio (zona urbana del distrito de Santa). Se consideró un tipo de investigación Aplicada con un alcance correlacional descriptivo. El siguiente es un enfoque que cubre las principales fases del trabajo de esta investigación: (cuantitativo y descriptivo).

Figura 2. Esquema del método de la investigación realizada

3.4. Diseño de Investigación

Se consideró un diseño de investigación no experimental puesto que, se identificaron las variables y estas fueron analizadas sin la necesidad de intervenir directamente, es decir no fueron manipuladas porque se utilizaron los datos geotécnicos encontrados con los ensayos a fin de establecer las áreas más idóneas para los diferentes tipos de cimentaciones de la zona urbana del distrito de Santa. Por otro lado, los datos fueron recolectados en solo momento razón por lo cual esta investigación fue de un corte transversal. Se propuso el siguiente esquema de diseño no experimental:

Figura 3

Esquema del diseño No experimental transversal

Donde:

M: zonas urbanas del distrito de Santa

Ox: observación de zonificación geotécnica del distrito de Santa

O_Y: observación de la cimentación

3.5. Población y Muestra

La población tomada en cuenta para la investigación fue finita, y abarcó la zona urbana del distrito de Santa, en la provincia de Santa, en el departamento de Áncash, Perú.

Figura 3. Mapa satelital del distrito de Santa

Nota. Recopilado de Google Earth (2024). https://www.google.es/intl/es/earth/index.html

3.6. Muestra

Enfocados en cubrir adecuadamente el área de estudio para poder realizar un análisis representativo de las condiciones geotécnicas de la zona urbana del distrito de Santa, y cómo estas influyen en las decisiones sobre el tipo de cimentación se consideró un muestreo no probalístico por conveniencia los cuales nos permitieron ubicar y seccionar la zona para tener un mejor análisis.

Figura 4. Mapa satelital sectorizado del distrito de Santa para selección de la muestra

Nota. Recopilado de Google Earth (2024). https://www.google.es/intl/es/earth/index.html

3.7. Operacionacionalizacion de Variables

3.7.1. Variable independiente: Zonificación geotécnica

Definición Conceptual: La zonificación geotécnica es el proceso mediante el cual se clasifican los terrenos o áreas de acuerdo con sus características geotécnicas y geológicas, tales como la composición del suelo, la capacidad portante, el nivel freático, la estabilidad frente a movimientos sísmicos, y otros factores que afectan el comportamiento del terreno bajo carga. Esta clasificación permite determinar las zonas aptas para la construcción y aquellas que requieren tratamientos especiales (González, 2020).

Definición Operacional: La zonificación geotécnica se operacionalizó como el procedimiento de recolección de datos mediante sondajes, pruebas de penetración estándar (DPL), ensayos de laboratorio (como el análisis de granulometría y plasticidad), para determinar la resistencia del suelo y sus condiciones geotécnicas.

Con estos datos se generó un mapa que clasificó las zonas del territorio del distrito según su capacidad para soportar cargas y resistir movimientos sísmicos, facilitando la elección del tipo de cimentación (Terzaghi, Peck, & Mesri, 1996). (Castillo L., 2020)

3.7.2. Variable Dependiente: Cimentación

Definición Conceptual: La cimentación es el sistema estructural que transfiere las cargas de una edificación hacia el suelo, asegurando su estabilidad. Las cimentaciones pueden clasificarse en superficiales (zapatas, losas) y profundas (pilotes, micropilotes), dependiendo de las características geotécnicas del terreno y las cargas estructurales esperadas. El tipo de cimentación seleccionado dependerá de la capacidad portante del suelo y de las condiciones geológicas y sísmicas de la zona (Budhu, 2011).

Definición Operacional: La cimentación se define operacionalmente como el tipo de estructura constructiva que se utiliza para transmitir las cargas de una edificación al terreno, determinado por las características del suelo en la zona de construcción. Los estudios geotécnicos, que incluyen análisis de laboratorio y pruebas de campo, permiten identificar el tipo de cimentación necesario: si el suelo tiene una buena capacidad portante, se utilizará una cimentación superficial; si el terreno es débil o inestable, se optará por una cimentación profunda (López, 2018).

 Tabla 2.
 Matriz de consistencia

Problemas	Objetivos	Hipótesis	Variables
Problema General	Objetivo General	Hipótesis General	
¿Cuál es la zonificación geotécnica con fines de cimentación en la zona urbana del dstrito de Santa, provincia del Santa, Departamento Ancash - 2022?	Conocer la zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia del Santa, Departamento Ancash - 2022.		Variable Independiente: Zonificación Geotécnica
		La zonificación geotécnica	
Problemas Específicos	Objetivos Específicos	permitirá agrupar zonas según el tipo de suelo yla	
¿Cuál es la zonificación geotécnica de los suelos en la zona urbana del distrito de Santa?	Obtener las zonas geotécnicas en la zona urbana del distrito de Santa.	capacidad de carga admisible.	
¿Cuál es la capacidad de carga admisiblede los suelos encontrados en la zona urbana del distrito de Santa?	Determinar la capacidad admisible de los suelos de la zona urbana del distrito de Santa.		Variable Dependiente: Cimentación

En la Tabla 2. Matriz de Consistencia se muestra de manera visualmente organizada el problema general y problemas específicos que dieron origen a este estudio de investigación, respectivamente tenemos cada objetivo general como los específicos que son la clave para dar respuestas a los resultados que obtendremos al ensayar las muestras respectivas del suelo de cada calicata de la zona urbana del distrito de Santa, la hipótesis en que basamos nuestra investigación de ser aceptada o rechazada al finalizar la investigación y las variables en las que basamos el resultado de la investigación.

 Tabla 3.
 Matriz de operacionalización de variables

Vari	ables	Definición Conceptual	Definición Operacional	Dimensiones	Indicadores	Instrumento	Escala De Medición	
TE	CA			Capacidad	ANGULO FRICCION	DPL, CORTE DIRECTO	_	
VARIABLE INDEPENDIENTE	ZONIFICACIÓN GEOTÉCNICA	Consiste en delimitar sectores relativamente homogéneos, con características físico-mecánicas similares, donde se identifican parámetros	El estudio se realizará en la zona urbana del	admisible	COHESION	CORTE DIRECTO		
E INDE	CIÓN G	fundamentales que prevén algunos problemas constructivos que pueden presentarse, además permite conocer el comportamiento del terreno para	distrito de Santa, provincia del Santa,		Granulometría	- COPA	Nominal	
ARIABL	ARIABL) ONIFICA	diferentes usos desde el punto de vista del desarrollo urbano	departamento Ancash.	Caracterización del suelo Límites de Atterberg		COPA CASAGRANDE, BALANZA, HORNO, ETC		
^ ^	Z				Contenido de Humedad	- HOKNO, ETC		
VARIABLE DEPENDIENTE	CIMENTACIÓN	Está sujeta a la determinación real de las condiciones del suelo y el comportamiento que tendrá la cimentación cuando esté afectada por la	El diseño de cimentación se basa en la capacidad portante y asentamientos	cimentación se basa en la capacidad portante v asentamientos Tipo de		Tablas de ntp E-050, libro mecanica	Nominal	
VARIABLEI	CIMEN	acción de las cargas que le transmite la superestructura.	del suelo según los suelos con características similares.	cimentación	Profundas	- de suelos crespo villalaz - 5ta edición.		

En Tabla 3. Matriz de Operacionalización de variables se muestran las dimensiones de las variables independiente y la dependienta determinada los instrumentos (ensayos) DPL, corte directo, copa Casagrande, NTP. 050 y demás libros, determinados con la escala de medición nominal.

3.8. Técnicas e Instrumentos de Recolección de Datos

Para obtener datos precisos y confiables en el contexto urbano del distrito de Santa, se emplean diversas técnicas y herramientas de recolección de datos. Las técnicas usadas para el desarrollo de la investigación fueron:

- Ensayos de laboratorio
- Análisis Documental

Esto debido a que, se observó el tipo de suelos y midió las relaciones entre ellas en su estado natural. Estas técnicas para la recolección estuvieron orientadas a obtener datos numéricos de los distintos ensayos realizados al suelo del distrito, es decir, aquellos que pueden ser contados o medidos en términos de cantidad. Se empleándose como instrumentos de Recolección de Datos:

- Informes geotécnicos anteriores
- Mapas de zonificación geotécnica
- Equipos de sondajes y pruebas anteriores
- Fichas Técnicas Estandarizadas
- Equipos de muestreo
- Plataforma de carga (o placa de carga)
- Ensayo de laboratorios

Por otra parte, la validación de los instrumentos utilizados en la zonificación geotécnica del distrito de Santa fue un proceso fundamental para asegurar la calidad y confiabilidad de los datos que fueron recolectados. Este proceso implicó la calibración, pruebas de comparación, verificación con normas y estándares, control de calidad de las muestras y un mantenimiento constante de los equipos. Además, fue necesario realizar pruebas de repetibilidad y reproducibilidad para garantizar que los resultados sean consistentes. Solo a través de un riguroso

proceso de validación se pudo garantizar que los datos obtenidos sean adecuados para tomar decisiones sobre la cimentación y la seguridad de las estructuras en la zona urbana.

Los instrumentos fueron validados mediante la revisión de Normas y Estándares Técnicos:

- ASTM (Sociedad Estadounidense para Pruebas y Materiales)
- ISO (Organización Internacional de Normalización)
- RNE (reglamento nacional de edificaciones)
- SUCS (Sistema Único de Cálculo de Suelos)
- NTP (Norma Técnica Peruana)

3.9. Técnicas de análisis de resultados

Los resultados fueron procesados mediante un análisis descriptivo y un análisis inferencial, para ello se utilizó el Microsoft Excel, herramienta que nos ayudó a procesar y analizar toda la información recogida de los ensayos geotécnicos de manera más orgánica y entendible para tomar las soluciones más idóneas sobre el tipo de cimentación para cada sector del distrito de Santa. A continuación, se expone este proceso más a detalle:

- Análisis Descriptivo de la Zonificación Geotécnica

Consistió en una descripción detallada de los resultados obtenidos en campo y en laboratorio, como las características de los suelos, sus propiedades físicas (granulometría, límites de Atterberg, densidad, etc.) y sus propiedades mecánicas (resistencia al corte, módulo de elasticidad, etc.). Este análisis se realizó a través de tablas, gráficos y diagramas que resumen la información geotécnica de cada zona del área de estudio.

Métodos:

- Descripción cualitativa de los suelos (tipos de material, color, textura, etc.).
- Análisis cuantitativo a partir de datos obtenidos en ensayos de laboratorio.

- Selección de tipo de Suelos según Normas Técnicas

Para la zonificación geotécnica, fue fundamental clasificar los suelos de acuerdo con las normativas técnicas nacionales e internacionales (como la norma ASTM y la norma AASHTO).

Métodos:

- Clasificación de suelos basada en el sistema de clasificación USCS (Unified Soil Classification System) o AASHTO.
- Categorización de suelos según su capacidad portante y características de compacidad.

Este análisis nos ayudó a determinar el tipo de cimentación adecuado en cada zona urbana del distrito de Santa.

- Análisis de Capacidad Portante

Este análisis se enfocó en determinar la capacidad de los suelos para soportar cargas estructurales sin experimentar fallas, asentamientos excesivos o inestabilidad.

Métodos:

- Uso de fórmulas empíricas, como las de Terzaghi o Meyerhof, para el cálculo de la capacidad portante del suelo.
- Análisis de la capacidad portante en función de la profundidad de cimentación y el tipo de carga estructural esperada.

- Análisis Estadístico de los Datos Geotécnicos

El análisis estadístico fue esencial para entender la variabilidad de los datos geotécnicos en la zona de estudio y para extrapolar los resultados a una mayor área. Esto incluyó técnicas de análisis de dispersión, media, mediana y desviación estándar, lo que permitió determinar la confiabilidad de los resultados obtenidos. Se aplicó la **prueba t de Student** ya que, se tomaron muestra en distintos puntos para:

- Resistencia al corte (c, ϕ) : para saber si la resistencia al corte promedio difiere entre esas zonas.
- Capacidad portante: para comparar la capacidad portante media de los suelos en las áreas diferentes del distrito
- Cohesión: Comparar las medias de la cohesión de los suelos entre distintas zonas.

El nivel de significancia utilizado fue de α =0.05 lo que indica un 5% de probabilidad de cometer un error tipo I (rechazar una hipótesis nula que es verdadera).

- Interpretación de Resultados y Elaboración de Mapas de Zonificación

A partir de los análisis previos, los resultados fueron interpretados para elaborar la zonificación geotécnica del área urbana del distrito de Santa. Esto implicó la categorización de las zonas según su idoneidad para diferentes tipos de cimentación. Finalmente, la zonificación geotécnica se presentó en mapas y diagramas detallados, destacando las zonas de riesgo y aquellas adecuadas para la construcción.

CAPÍTULO IV RESULTADOS Y DISCUSIÓN

4. CAPITULO IV: RESULTADOS Y DISCUSIÓN

4.1. Resultados

4.1.1. Capacidad admisible de los suelos de la zona urbana del Distrito de Santa.

Tabla 4. Determinación de la capacidad portante para zapata cuadrada zona 1

Qadm=Caj	pacidad			B=Anc	ho de Zap	oata (m)		
Admisible (kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.24	0.26	0.27	0.29	0.31	0.33	0.34
	1.00	0.29	0.31	0.32	0.34	0.36	0.38	0.39
	1.20	0.34	0.36	0.38	0.39	0.41	0.43	0.44
Df (m)	1.40	0.39	0.41	0.43	0.44	0.46	0.48	0.50
	1.60	0.44	0.46	0.48	0.50	0.51	0.53	0.55
	1.80	0.50	0.51	0.53	0.55	0.56	0.58	0.60
	2.00	0.55	0.56	0.58	0.60	0.62	0.63	0.65

Para un ancho de zapata de 1.00 m, cuando la profundidad aumenta de 0.80 m a 2.00m, la capacidad admisible pasa de 0.24 kg/cm² a 0.55 kg/cm².ya que esta zona encontramos un suelo SC, este puede soportar esta presión **de carga.**

Tabla 5. Determinación de la capacidad portante para cimiento corrido zona 1

Qadm=C	apacidad		B=Ancho de Zapata (m)								
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00			
	0.80	0.23	0.24	0.24	0.25	0.26	0.28	0.28			
Df (m)	1.00	0.28	0.29	0.30	0.30	0.32	0.33	0.34			
	1.20	0.33	0.34	0.35	0.35	0.37	0.38	0.39			

1.40	0.38	0.39	0.40	0.41	0.42	0.43	0.44
1.60	0.43	0.44	0.45	0.46	0.47	0.48	0.49
1.80	0.49	0.49	0.50	0.51	0.52	0.53	0.54
2.00	0.54	0.54	0.55	0.56	0.57	0.58	0.59

Tabla 6. Determinación de la capacidad portante para zapata cuadrada zona 2

Qadm=Ca	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90

En base a los resultamos según las tablas 7 y 8, podemos ver que el suelo SC la resistencia a la compresión y al corte es bastante buena para soportar cargas moderadas, a pesar que el suelo de esta zona tiene baja cohesión, lo cual significa que no es tan denso o compacto como los suelos de arcilla pura sin embargo, todavía puede proporcionar soporte para cimentaciones debido a la presencia de arena, que proporciona mayor estabilidad y actúa de directamente proporcional, es decir A medida que aumenta la profundidad de fundación (Df), la capacidad portante admisible (Qadm) también aumenta.

 Tabla 7.
 Determinación de la capacidad portante para cimiento corrido zona 2

Qadm=Ca	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.31	0.32	0.33	0.35	0.37	0.39	0.40
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80

 Tabla 8.
 Determinación de la capacidad portante para zapata cuadrada zona 3

Qadm=C	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90

 Tabla 9.
 Determinación de la capacidad portante para cimiento corrido zona 3

Qadm=C	apacidad			B=Anc	cho de Zapa	ata (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.31	0.32	0.33	0.35	0.37	0.39	0.40
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80

Tabla 10. Determinación de la capacidad portante para zapata cuadrada zona 4

Qadm=C	apacidad			B=Anc	cho de Zap	ata (m)		
Admi	sible	1.00	1.50	2.00	2.50	3.00	3.50	4.00
(kg/c	m2)							
	0.80	0.26	0.28	0.30	0.32	0.34	0.36	0.38
	1.00	0.32	0.34	0.36	0.38	0.40	0.42	0.44
	1.20	0.37	0.39	0.41	0.43	0.45	0.47	0.49
Df (m)	1.40	0.43	0.45	0.47	0.49	0.51	0.53	0.55
	1.60	0.48	0.50	0.52	0.54	0.56	0.58	0.60
	1.80	0.54	0.56	0.58	0.60	0.62	0.64	0.66
	2.00	0.59	0.61	0.63	0.65	0.67	0.69	0.71

El suelo tiene una resistencia a la corte moderada a alta, para esta zona el suelo encontrado fue SM, suelo tiene una mayor capacidad para resistir deslizamientos o

desplazamientos debido a la acción de las cargas aplicadas. Aunque el suelo **SM** tiene una **cohesión baja** (0.1153 kg/cm²), su resistencia por fricción (34.8°) es relativamente alta, lo que lo hace adecuado para cimentaciones superficiales, especialmente si se optimizan los anchos y las profundidades de las zapatas según los requerimientos de carga.

Tabla 11. Determinación de la capacidad portante para cimiento corrido zona 4

Qadm=Ca	apacidad			B=Anc	ho de Zap	oata (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
-	0.80	0.25	0.26	0.27	0.28	0.29	0.30	0.31
	1.00	0.30	0.31	0.32	0.33	0.35	0.36	0.37
	1.20	0.36	0.37	0.38	0.39	0.40	0.41	0.42
Df (m)	1.40	0.41	0.42	0.43	0.44	0.46	0.47	0.48
	1.60	0.47	0.48	0.49	0.50	0.51	0.52	0.53
	1.80	0.53	0.53	0.54	0.55	0.57	0.58	0.59
	2.00	0.58	0.59	0.60	0.61	0.62	0.64	0.64

 Tabla 12. Determinación de la capacidad portante para zapata cuadrada zona 5

Qadm=C	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.47	0.52	0.57	0.62	0.67	0.72	0.77
	1.00	0.56	0.61	0.66	0.71	0.76	0.81	0.86
Df (m)	1.20	0.65	0.70	0.75	0.80	0.85	0.90	0.95
	1.40	0.74	0.79	0.84	0.89	0.94	0.99	1.04
	1.60	0.84	0.89	0.94	0.99	1.04	1.09	1.13
		0.01	0.00	0.5	0.77	1.0 .	1.07	1.10

1.80	0.93	0.98	1.03	1.08	1.13	1.18	1.23
2.00	1.02	1.07	1.12	1.17	1.22	1.27	1.32

Tabla 13. Determinación de la capacidad portante para cimiento corrido zona 5

Qadm=Ca	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.44	0.46	0.48	0.51	0.54	0.57	0.60
	1.00	0.53	0.55	0.58	0.60	0.63	0.67	0.69
	1.20	0.62	0.64	0.67	0.69	0.72	0.76	0.78
Df (m)	1.40	0.71	0.74	0.76	0.78	0.82	0.85	0.87
	1.60	0.81	0.83	0.85	0.87	0.91	0.94	0.97
	1.80	0.90	0.92	0.94	0.97	1.00	1.04	1.06
	2.00	0.99	1.01	1.04	1.06	1.09	1.13	1.15

Tabla 14. Determinación de la capacidad portante para zapata cuadrada zona 6

Qadm=Ca	apacidad			B=Ano	cho de Zapa	ata (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90

Tabla 15. Determinación de la capacidad portante para cimiento corrido zona 6

Qadm=C	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.31	0.32	0.33	0.35	0.37	0.39	0.40
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80

Tabla 16. Determinación de la capacidad portante para zapata cuadrada zona 7

Qadm=C	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90

Tabla 17. Determinación de la capacidad portante para cimiento corrido zona 7

Qadn	n=Capacidad			B=Anc	ho de Zap	ata (m)		
Admisible (kg	/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.31	0.32	0.33	0.35	0.37	0.39	0.40
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80

 $\textbf{Tabla 18.} \ \ \textit{Determinación de la capacidad portante para zapata cuadrada zona } 8$

Qadm=Ca	apacidad							
Admi	sible	1.00	1.50	2.00	2.50	3.00	3.50	4.00
(kg/c	m2)							
	0.80	0.24	0.26	0.27	0.29	0.31	0.33	0.34
	1.00	0.29	0.31	0.32	0.34	0.36	0.38	0.39
	1.20	0.34	0.36	0.38	0.39	0.41	0.43	0.44
Df (m)	1.40	0.39	0.41	0.43	0.44	0.46	0.48	0.50
	1.60	0.44	0.46	0.48	0.50	0.51	0.53	0.55
	1.80	0.50	0.51	0.53	0.55	0.56	0.58	0.60
	2.00	0.55	0.56	0.58	0.60	0.62	0.63	0.65
	2.00	0.33	0.30	0.38	0.00	0.62	0.03	U.

 $\textbf{Tabla 19.} \ \ \textit{Determinación de la capacidad portante para cimiento corrido zona 8}$

Qadm=Ca	apacidad			B=Anc	cho de Zap	ata (m)		
Admi	sible	0.60	0.80	1.00	1.20	1.50	1.80	2.00
(kg/c	m2)							
	0.80	0.23	0.24	0.24	0.25	0.26	0.28	0.28
	1.00	0.28	0.29	0.30	0.30	0.32	0.33	0.34
	1.20	0.33	0.34	0.35	0.35	0.37	0.38	0.39
Df (m)	1.40	0.38	0.39	0.40	0.41	0.42	0.43	0.44
	1.60	0.43	0.44	0.45	0.46	0.47	0.48	0.49
	1.80	0.49	0.49	0.50	0.51	0.52	0.53	0.54
	2.00	0.54	0.54	0.55	0.56	0.57	0.58	0.59

Tabla 20. Determinación de la capacidad portante para zapata cuadrada zona 9

Qadm=Ca	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.30	0.33	0.35	0.38	0.41	0.43	0.46
	1.00	0.37	0.39	0.42	0.44	0.47	0.49	0.52
	1.20	0.43	0.45	0.48	0.51	0.53	0.56	0.58
Df (m)	1.40	0.49	0.52	0.54	0.57	0.59	0.62	0.65
	1.60	0.56	0.58	0.61	0.63	0.66	0.68	0.71
	1.80	0.62	0.64	0.67	0.69	0.72	0.75	0.77
	2.00	0.68	0.71	0.73	0.76	0.78	0.81	0.83

Tabla 21. Determinación de la capacidad portante para cimiento corrido zona 9

Qadm=Ca	apacidad			B=Anc	ho de Zap	ata (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.29	0.30	0.31	0.32	0.34	0.36	0.37
	1.00	0.35	0.36	0.37	0.39	0.40	0.42	0.43
	1.20	0.41	0.43	0.44	0.45	0.47	0.48	0.50
Df (m)	1.40	0.48	0.49	0.50	0.51	0.53	0.55	0.56
	1.60	0.54	0.55	0.56	0.57	0.59	0.61	0.62
	1.80	0.60	0.61	0.63	0.64	0.66	0.67	0.68
	2.00	0.67	0.68	0.69	0.70	0.72	0.74	0.75
-								

Tabla 22. Determinación de la capacidad portante para zapata cuadrada zona 10

Qadm=Cap	acidad			B=Anch	o de Zaj	pata (m)		
Admisi	Admisible		1.50	2.00	2.50	3.00	3.50	4.00
(kg/cm	2)							
	0.80	0.26	0.28	0.30	0.32	0.34	0.37	0.39
	1.00	0.32	0.34	0.36	0.38	0.40	0.42	0.44
	1.20	0.37	0.39	0.41	0.43	0.45	0.47	0.50
Df (m)	1.40	0.42	0.45	0.47	0.49	0.51	0.53	0.55
	1.60	0.48	0.50	0.52	0.54	0.56	0.58	0.60
	1.80	0.53	0.55	0.58	0.60	0.62	0.64	0.66
	2.00	0.59	0.61	0.63	0.65	0.67	0.69	0.71

Tabla 23. Determinación de la capacidad portante para cimiento corrido zona 10

Qadm=C	apacidad			B=Ancl	ho de Zap	oata (m)		
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.25	0.26	0.27	0.28	0.29	0.31	0.31
	1.00	0.30	0.31	0.32	0.33	0.35	0.36	0.37
	1.20	0.36	0.37	0.38	0.39	0.40	0.41	0.42
Df (m)	1.40	0.41	0.42	0.43	0.44	0.45	0.47	0.48
	1.60	0.47	0.48	0.49	0.49	0.51	0.52	0.53
	1.80	0.52	0.53	0.54	0.55	0.56	0.58	0.59
	2.00	0.58	0.58	0.59	0.60	0.62	0.63	0.64

Tabla 24. Determinación de la capacidad portante para zapata cuadrada zona 11

Qadm=C	apacidad	B=Ancho de Zapata (m)								
Admisible	e (kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00		
	0.80	0.29	0.31	0.34	0.36	0.39	0.41	0.43		
	1.00	0.35	0.37	0.40	0.42	0.45	0.47	0.49		
	1.20	0.41	0.43	0.46	0.48	0.51	0.53	0.55		
Df (m)	1.40	0.47	0.49	0.52	0.54	0.57	0.59	0.61		
	1.60	0.53	0.55	0.58	0.60	0.63	0.65	0.67		
	1.80	0.59	0.61	0.64	0.66	0.69	0.71	0.73		
	2.00	0.65	0.67	0.70	0.72	0.75	0.77	0.79		

Tabla 25. Determinación de la capacidad portante para cimiento corrido zona 11

Qadm=Capacidad		B=Ancho de Zapata (m)								
Admisible	Admisible (kg/cm2)		0.80	1.00	1.20	1.50	1.80	2.00		
	0.80	0.27	0.28	0.30	0.31	0.32	0.34	0.35		
	1.00	0.33	0.34	0.36	0.37	0.38	0.40	0.41		
	1.20	0.39	0.40	0.42	0.43	0.44	0.46	0.47		
Df (m)	1.40	0.45	0.46	0.48	0.49	0.50	0.52	0.53		
	1.60	0.51	0.52	0.54	0.55	0.56	0.58	0.59		
	1.80	0.57	0.58	0.60	0.61	0.62	0.64	0.65		
	2.00	0.63	0.65	0.66	0.67	0.68	0.70	0.71		
		0.02	0.02	0.00	0.07	0.00	0.70	0.71		

Tabla 26. Determinación de la capacidad portante para zapata cuadrada zona 12

Qadm=Ca	apacidad	B=Ancho de Zapata (m)								
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00		
	0.80	0.42	0.46	0.50	0.54	0.59	0.63	0.67		
	1.00	0.50	0.54	0.59	0.63	0.67	0.71	0.75		
	1.20	0.59	0.63	0.67	0.71	0.75	0.80	0.84		
Df (m)	1.40	0.67	0.71	0.75	0.80	0.84	0.88	0.92		
	1.60	0.75	0.79	0.84	0.88	0.92	0.96	1.01		
	1.80	0.84	0.88	0.92	0.96	1.00	1.05	1.09		
	2.00	0.92	0.96	1.00	1.05	1.09	1.13	1.17		

Tabla 27. Determinación de la capacidad portante para cimiento corrido zona 12

Qadm=Capacidad		B=Ancho de Zapata (m)								
Admisible	Admisible (kg/cm2)		0.80	1.00	1.20	1.50	1.80	2.00		
	0.80	0.39	0.41	0.43	0.45	0.48	0.51	0.53		
	1.00	0.48	0.50	0.51	0.53	0.56	0.59	0.61		
	1.20	0.56	0.58	0.60	0.62	0.65	0.68	0.69		
Df (m)	1.40	0.64	0.66	0.68	0.70	0.73	0.76	0.78		
	1.60	0.73	0.75	0.77	0.78	0.81	0.84	0.86		
	1.80	0.81	0.83	0.85	0.87	0.90	0.93	0.95		
	2.00	0.89	0.91	0.93	0.95	0.98	1.01	1.03		

 Tabla 28. Determinación de la capacidad portante para zapata cuadrada zona 13

Qadm=Ca	pacidad		B=Ancho de Zapata (m)							
Admisible ((kg/cm2) -	1.00	1.50	2.00	2.50	3.00	3.50	4.00		
Df (m)	0.80	0.39	0.42	0.46	0.50	0.54	0.58	0.62		
	1.00	0.46	0.50	0.54	0.58	0.62	0.66	0.70		
	1.20	0.54	0.58	0.62	0.66	0.70	0.73	0.77		
	1.40	0.62	0.66	0.70	0.73	0.77	0.81	0.85		
	1.60	0.69	0.73	0.77	0.81	0.85	0.89	0.93		
	1.80	0.77	0.81	0.85	0.89	0.93	0.97	1.00		
	2.00	0.85	0.89	0.93	0.97	1.00	1.04	1.08		

Tabla 29. Determinación de la capacidad portante para cimiento corrido zona 13

Qadm=Capacidad		B=Ancho de Zapata (m)								
Admisible	Admisible (kg/cm2)		0.80	1.00	1.20	1.50	1.80	2.00		
	0.80	0.36	0.38	0.40	0.42	0.44	0.47	0.49		
	1.00	0.44	0.46	0.47	0.49	0.52	0.55	0.56		
	1.20	0.52	0.53	0.55	0.57	0.60	0.62	0.64		
Df (m)	1.40	0.59	0.61	0.63	0.65	0.67	0.70	0.72		
	1.60	0.67	0.69	0.71	0.72	0.75	0.78	0.80		
	1.80	0.75	0.77	0.78	0.80	0.83	0.85	0.87		
	2.00	0.82	0.84	0.86	0.88	0.91	0.93	0.95		

Tabla 30. Determinación de la capacidad portante para zapata cuadrada zona 14

Qadm=C	Qadm=Capacidad		B=Ancho de Zapata (m)								
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00			
	0.80	0.40	0.44	0.48	0.52	0.56	0.60	0.64			
	1.00	0.48	0.52	0.56	0.60	0.64	0.68	0.72			
	1.20	0.56	0.60	0.64	0.68	0.72	0.76	0.80			
Df (m)	1.40	0.64	0.68	0.72	0.76	0.80	0.84	0.88			
	1.60	0.72	0.76	0.80	0.84	0.88	0.92	0.96			
	1.80	0.80	0.84	0.88	0.92	0.96	1.00	1.04			
	2.00	0.88	0.92	0.96	1.00	1.04	1.08	1.12			

Tabla 31. Determinación de la capacidad portante para cimiento corrido zona 14

Qadm=Capacidad		B=Ancho de Zapata (m)								
Admisibl	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00		
	0.80	0.37	0.39	0.41	0.43	0.46	0.48	0.50		
	1.00	0.45	0.47	0.49	0.51	0.54	0.56	0.58		
	1.20	0.53	0.55	0.57	0.59	0.62	0.64	0.66		
Df (m)	1.40	0.61	0.63	0.65	0.67	0.70	0.72	0.74		
	1.60	0.69	0.71	0.73	0.75	0.78	0.80	0.82		
	1.80	0.77	0.79	0.81	0.83	0.85	0.88	0.90		
	2.00	0.85	0.87	0.89	0.91	0.93	0.96	0.98		

 Tabla 32. Determinación de la capacidad portante para zapata cuadrada zona 15

Qadm=Capacidad		B=Ancho de Zapata (m)								
(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00			
0.80	0.41	0.45	0.49	0.53	0.58	0.62	0.66			
1.00	0.49	0.53	0.57	0.61	0.66	0.70	0.74			
1.20	0.57	0.61	0.65	0.70	0.74	0.78	0.82			
1.40	0.65	0.69	0.73	0.78	0.82	0.86	0.90			
1.60	0.73	0.77	0.82	0.86	0.90	0.94	0.98			
1.80	0.81	0.85	0.90	0.94	0.98	1.02	1.06			
2.00	0.89	0.93	0.98	1.02	1.06	1.10	1.15			
	0.80 1.00 1.20 1.40 1.60 1.80	(kg/cm2) 1.00 0.80 0.41 1.00 0.49 1.20 0.57 1.40 0.65 1.60 0.73 1.80 0.81	(kg/cm2) 1.00 1.50 0.80 0.41 0.45 1.00 0.49 0.53 1.20 0.57 0.61 1.40 0.65 0.69 1.60 0.73 0.77 1.80 0.81 0.85	(kg/cm2) 1.00 1.50 2.00 0.80 0.41 0.45 0.49 1.00 0.49 0.53 0.57 1.20 0.57 0.61 0.65 1.40 0.65 0.69 0.73 1.60 0.73 0.77 0.82 1.80 0.81 0.85 0.90	(kg/cm2) 1.00 1.50 2.00 2.50 0.80 0.41 0.45 0.49 0.53 1.00 0.49 0.53 0.57 0.61 1.20 0.57 0.61 0.65 0.70 1.40 0.65 0.69 0.73 0.78 1.60 0.73 0.77 0.82 0.86 1.80 0.81 0.85 0.90 0.94	(kg/cm2) 1.00 1.50 2.00 2.50 3.00 0.80 0.41 0.45 0.49 0.53 0.58 1.00 0.49 0.53 0.57 0.61 0.66 1.20 0.57 0.61 0.65 0.70 0.74 1.40 0.65 0.69 0.73 0.78 0.82 1.60 0.73 0.77 0.82 0.86 0.90 1.80 0.81 0.85 0.90 0.94 0.98	(kg/cm2) 1.00 1.50 2.00 2.50 3.00 3.50 0.80 0.41 0.45 0.49 0.53 0.58 0.62 1.00 0.49 0.53 0.57 0.61 0.66 0.70 1.20 0.57 0.61 0.65 0.70 0.74 0.78 1.40 0.65 0.69 0.73 0.78 0.82 0.86 1.60 0.73 0.77 0.82 0.86 0.90 0.94 1.80 0.81 0.85 0.90 0.94 0.98 1.02			

Tabla 33. Determinación de la capacidad portante para cimiento corrido zona 15

Qadm=Capacidad		B=Ancho de Zapata (m)								
kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00			
0.80	0.38	0.40	0.42	0.44	0.47	0.50	0.52			
1.00	0.46	0.48	0.50	0.52	0.55	0.58	0.60			
1.20	0.54	0.56	0.58	0.60	0.63	0.66	0.68			
1.40	0.62	0.64	0.66	0.68	0.71	0.74	0.76			
1.60	0.71	0.72	0.74	0.76	0.79	0.82	0.84			
1.80	0.79	0.81	0.82	0.84	0.87	0.90	0.92			
2.00	0.87	0.89	0.91	0.92	0.95	0.98	1.00			
	0.80 1.00 1.20 1.40 1.60 1.80	0.80 0.38 1.00 0.46 1.20 0.54 1.40 0.62 1.60 0.71 1.80 0.79	0.80 0.38 0.40 1.00 0.46 0.48 1.20 0.54 0.56 1.40 0.62 0.64 1.60 0.71 0.72 1.80 0.79 0.81	0.80 0.38 0.40 0.42 1.00 0.46 0.48 0.50 1.20 0.54 0.56 0.58 1.40 0.62 0.64 0.66 1.60 0.71 0.72 0.74 1.80 0.79 0.81 0.82	0.80 0.38 0.40 0.42 0.44 1.00 0.46 0.48 0.50 0.52 1.20 0.54 0.56 0.58 0.60 1.40 0.62 0.64 0.66 0.68 1.60 0.71 0.72 0.74 0.76 1.80 0.79 0.81 0.82 0.84	0.80 0.38 0.40 0.42 0.44 0.47 1.00 0.46 0.48 0.50 0.52 0.55 1.20 0.54 0.56 0.58 0.60 0.63 1.40 0.62 0.64 0.66 0.68 0.71 1.60 0.71 0.72 0.74 0.76 0.79 1.80 0.79 0.81 0.82 0.84 0.87	0.80 0.38 0.40 0.42 0.44 0.47 0.50 1.00 0.46 0.48 0.50 0.52 0.55 0.58 1.20 0.54 0.56 0.58 0.60 0.63 0.66 1.40 0.62 0.64 0.66 0.68 0.71 0.74 1.60 0.71 0.72 0.74 0.76 0.79 0.82 1.80 0.79 0.81 0.82 0.84 0.87 0.90			

4.1.2. Tipo de cimentaciones para cada sector del Distrito de Santa en base al tipo de suelo

Tabla 34. Tipo de Cimentación en Función del Tipo de Suelo

Calicata	Estrato	Estrato	Estrato	Tipo de Cimentación Superficial
	01	02	03	Recomendada
C-01	SC	SC	-	Cimientos Aislados / Cimientos Corridos
C-02	SC	SP	-	Cimientos Aislados / Cimientos Corridos
C-03	SC	SC	-	Cimientos Aislados / Cimientos Corridos
C-04	SM	SM	-	Cimientos Aislados / Losa de Cimentación
C-05	SC	SP	-	Cimientos Aislados / Cimientos Corridos

C-06	SC	SC	-	Cimientos Aislados / Cimientos Corridos
C-07	SM	SC	-	Cimientos Aislados / Cimientos Corridos
C-08	SP	SC	-	Cimientos Aislados / Cimientos Corridos
C-09	SC	SC	-	Cimientos Aislados / Cimientos Corridos
C-10	SC	SM	-	Cimientos Aislados / Cimientos Corridos
C-11	SM	SM	-	Cimientos conectados / Losa de Cimentación
C-12	SM	SM	-	Cimientos conectados / Losa de Cimentación
C-13	SM	SM	-	Cimientos conectados / Losa de Cimentación
C-14	SM	SP	SM	Cimientos conectados / Losa de Cimentación
C-15	SM	SP	SM	Cimientos conectados / Losa de Cimentación

Tabla 35. Análisis para Zonificación Geotécnica con Fines de Cimentación en función de Ø y C

	Ángulo		
Calicata	de	Cohesión	Análisis para Cimentación
	Fricción	(Kg/cm ²)	
	(Ø)		
C01	32.9°	0.1702	Cimentación superficial adecuada para estructuras
			ligeras, suelo cohesivo con buena resistencia.
C02	29.8°	0.234	Suelo con resistencia moderada ; se recomienda
			cimentación profunda si se requieren grandes cargas.
C03	31.7°	0.1369	Cimentación superficial adecuada, suelo con buena
			resistencia al corte.

			OTE -
C04	37.21°	0.1347	Cimentación superficial adecuada para estructuras más
			pesadas, alta resistencia al corte, suelo bien compactado.
C05	36.72°	0.0946	Cimentación superficial adecuada, aunque la cohesión
			es baja, la resistencia al corte es alta.
C-06	29.17°	0.166	Cimentación superficial adecuada, pero se recomienda
			verificar el comportamiento bajo cargas altas.
C07	34.34°	0.1153	Cimentación superficial adecuada, con resistencia
			moderada.
C08	32.32°	0	Suelo arenoso con alta capacidad de drenaje; cimentación
			superficial adecuada si el terreno está bien compactado.
C09	35.52°	0.2813	Cimentación superficial adecuada, suelo cohesivo con
			buena resistencia al corte.
C10	25.95°	0	Cimentación profunda recomendada debido a baja
			cohesión y resistencia al corte.
C11	26.8°	0	Suelo con poca cohesión y resistencia al corte;
			cimentación profunda necesaria.
C-12	30.5°	0	Similar a la ZONA-11, con baja cohesión y resistencia
			moderada al corte; se recomienda cimentación
			profunda.
C-13	30.5°	0	Cimentación profunda, suelo con características similares
			a la ZONA-12.
C-14	30.5°	0	Cimentación profunda recomendada debido a la falta de
			cohesión y baja resistencia.
C-15	31.1°	0	Cimentación profunda recomendada, similar a las zonas
			anteriores de suelo arenoso.

4.1.3. Zonas geotécnicas en la zona urbana del Distrito de Santa en base a la capacidad admisible y el tipo de suelo

4.1.3.1. Características fisicas del suelo -granulometría

Figura 14

Figura 5. Granulometría del suelo Zona 01

Análisis e interpretación:

De la figura se observa que, la cantidad de grava es muy baja en ambas muestras, representando solo un 0.22%. Esto sugiere que la muestra es predominantemente de partículas más pequeñas. Sin embargo, la arena tiene un incremento notable en la fracción de arena entre las dos muestras, pasando de 75.95% en Estrato. 01 a 85.15% en Estrato 02. Esto indica que la segunda muestra tiene una mayor proporción de partículas de tamaño medio (arena), lo que podría reflejar cambios en la fuente del material o en el proceso de muestreo. Por otro lado, los finos materiales que son partículas más pequeñas (generalmente menores a 0.075 mm), representan un 23.83% en la Estrato 01 y un 14.62% en la Estrato 02. Esta disminución en los finos en la segunda muestra podría indicar una mayor concentración de partículas medianas

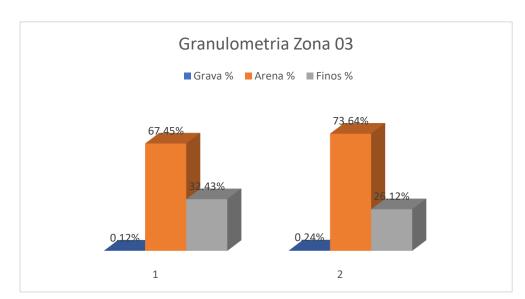
(arena), reduciendo la proporción de finos. Entonces podemos decir que mayor contenido de arena y menor proporción de finos puede generar un material más estable y menos susceptible a la expansión o contracción con cambios en la humedad. Sin embargo, la cantidad de grava sigue siendo baja en ambas muestras, lo que podría influir en la resistencia o la estabilidad estructural del material en aplicaciones que requieran mayor resistencia.

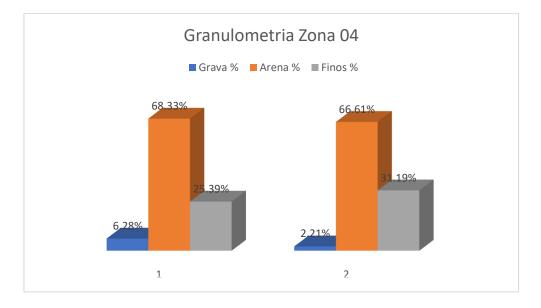
Figura 6. Granulometría del suelo Zona 02

Análisis e interpretación:

A pesar de ser estratos obtenidos de la misma calicata, se aprecia que la arena es el material dominante en ambas muestras. El estrato 2 tiene una mayor proporción de arena (casi el 90%), lo que sugiere que esta muestra tiene una textura más fina y menos variada en cuanto a tamaños de partículas comparado con estrato 1. Mas en cuanto a la grava en ambos casos es una pequeña proporción comparada con la arena ya que no pasa ni el 6%. En el estrato 1, los finos representan una parte significativa de la muestra (más del 23%), mientras que en el estrato 2, los finos son solo una pequeña fracción (menos del 5%). De los resultados mostrados en la figura 5, podemos decir que el

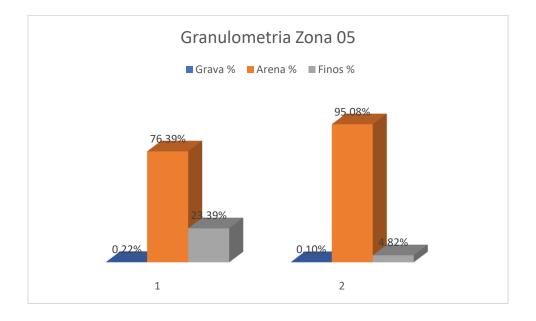
estrato 2 tiene una distribución relativamente uniforme de tamaños de partículas, aunque no es completamente homogéneo.



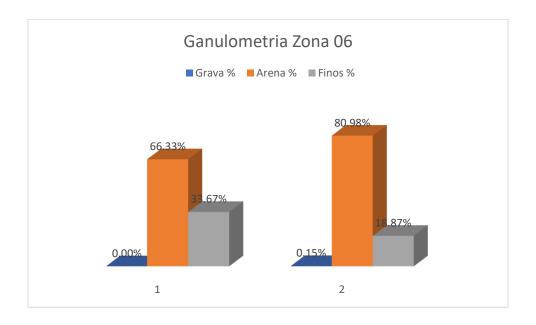

Figura 7. Granulometría del suelo Zona 03

Análisis e interpretación:

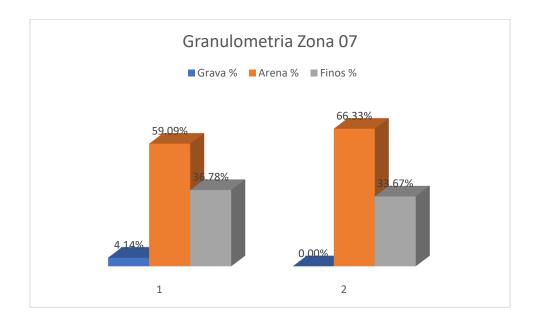
Las muestras presentan una diferencia en la distribución de sus tamaños de partícula, siendo el estrato 1 más fina y rica en finos, mientras que el estrato 2 tiene una mayor proporción de arena. Esta diferencia podría influir en las aplicaciones o usos de cada muestra, dependiendo de las necesidades específicas de la obra o proceso.


Figura 8. Granulometría del suelo Zona 04

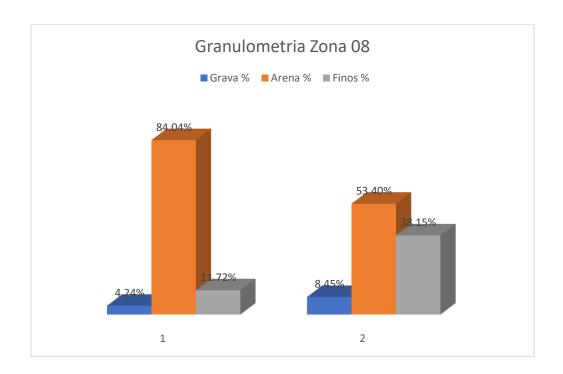
De la figura 7, las diferencias del porcentaje de grava y finos entre las dos estaciones indican que el tipo de material varía levemente. El estrato 1 tiene un mayor contenido de partículas gruesas, mientras que el estrato 02 tiene una mayor concentración de finos diferencia que podría influir en el comportamiento del material al momento de asentar la cimentación, sin embargo, es más susceptible a la compactación y con menor permeabilidad, lo cual podría ser importante en suelos que se usan para evitar el paso de agua o en otros contextos específicos.


Figura 9. Granulometría del suelo Zona 5

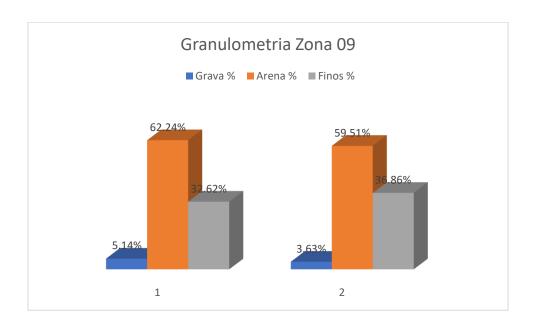
La grava representa una proporción muy pequeña en ambos estratos, siendo algo más alta en el Estrato 01. Esto sugiere que los estratos son principalmente más finos (arena y finos), con poca presencia de material grueso como la grava. Por otro lado, se observa de la figura que el estrato 02, la arena es predominante, representando un 95.08%, lo que sugiere que este estrato está compuesto principalmente por partículas de arena. Pero el Estrato 01 tiene una proporción menor de arena (76.39%), indicando que este estrato tiene una mayor variedad de partículas o es algo menos arenoso. En cuanto al porcentaje de finos (partículas pequeñas como arcilla o limos) es considerablemente mayor en el estrato 01 (23.39%) en comparación con el Estrato 02 (4.82%). Esto indica que el Estrato 01 tiene una mayor cantidad de partículas muy pequeñas, lo que podría implicar una textura más densa o compacta en comparación con el Estrato 02. Los valores sugieren que el material del estrato 2 tienen una distribución de partículas relativamente uniforme.


Figura 10. Granulometría del suelo Zona 06

En cuanto a la figura 9, vemos que el estrato 1. tiene un contenido de finos mayor, lo que lo hace más cohesivo y con menor permeabilidad que el Estrato 2, que es más arenoso y menos cohesivo. El estrato 02 parece ser más adecuado para aplicaciones que requieren buen drenaje mientras que el estrato 01 podría ser más útil en situaciones donde la retención de agua es importante o donde se requiere cierta cohesión en el suelo

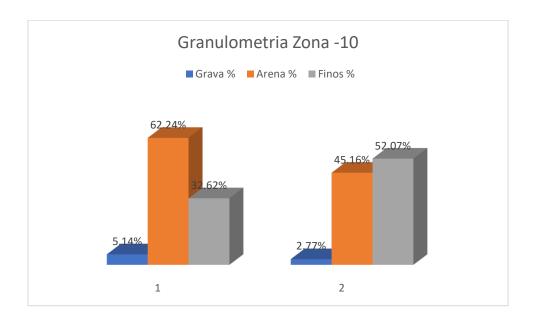

Figura 11. Granulometría del suelo Zona 07

El estrato 01 tiene una mejor capacidad de retención de agua debido a la mayor cantidad de finos, lo que podría ser adecuado para proyectos que requieren algo de cohesión o capacidad para mantener humedad. El estrato 02 es más arenoso y tiene una mayor permeabilidad, lo que lo hace adecuado para aplicaciones que requieren un drenaje eficiente o un material más suelto. La presencia de grava en el estrato 01 podría hacer que este estrato sea algo más resistente a la erosión y más adecuado para ciertas aplicaciones de construcción, mientras que el Estrato 02, con su mayor porcentaje de arena, podría ser más adecuado para proyectos donde el drenaje es prioritario, como sistemas de drenaje o suelos para ciertas plantas que requieren menos agua retenida.


Figura 12. Granulometría del suelo Zona 08

El Estrato 1 es altamente permeable (84.04% de arena), tiene una baja cohesión debido a la menor cantidad de finos, y sería adecuado para situaciones donde el drenaje es importante. Todo lo contrario, al Estrato 2 es menos permeable y tiene una mayor cohesión debido a la mayor cantidad de finos (38.15%). La mayor cantidad de grava también le da más resistencia y estabilidad, pero retendrá menos agua y será menos adecuado para drenaje. Entonces se puede intuir que el estrato superior (1) es menos compacto lo cual podría tener una baja capacidad de carga y puede asentarse o deformarse más fácilmente bajo carga de una Edificación. Esto puede causar problemas de asentamientos diferenciales debido a que las cargas no se distribuirán de manera uniforme.

Figura 13. Granulometría del suelo Zona 09



Para el Estrato 01 podemos decir que, tiene una mayor proporción de arena y una menor cantidad de finos, lo que lo hace más permeable y adecuado para aplicaciones donde el drenaje es importante, como sistemas de drenaje o en situaciones donde se necesita evitar la acumulación de agua.

En cuanto al Estrato 02, tiene un mayor contenido de finos, lo que lo hace más cohesivo y menos permeable, con una mayor capacidad de retención de agua. Este tipo de suelo puede ser útil para aplicaciones que requieren mayor retención de humedad o estabilidad, pero no es ideal para drenaje. En general de la figura 12 se observa que las diferencias en los estratos noes muy grande y que muy probablemente las cargas se distribuirán gradualmente a través del estrato superior hasta llegar al estrato inferior de forma gradual y el asentamiento puede ser controlado.

Figura 14. Granulometría del suelo Zona 10

Para el estrato 1 se observa, que la alta proporción de arena (62.24%) en este estrato sugiere que es un suelo permeable, lo que facilita el drenaje del agua. Si bien esto es positivo para evitar la acumulación de agua cerca de la cimentación, también puede generar problemas de estabilidad si la estructura no es diseñada adecuadamente. En base a lo observado en la figura 13 se puede afirmar que el estrato tiene una capacidad de carga moderada debido a la presencia de finos (32.62%), que proporcionan algo de cohesión al suelo. Sin embargo, la arena en exceso puede reducir la capacidad de carga, lo que hace que el estrato sea susceptible a asentamientos, especialmente si la cimentación no está bien dimensionada o si las cargas son altas

Por el contrario, en el estrato 2 se evidencia una alta proporción de finos (52.07%) por lo que sugiere un suelo con mayor cohesión, este le permite ser más resistente a cargas de compresión que el Estrato 1. Sin embargo, debido a su mayor contenido de finos, este estrato tiene una permeabilidad baja, lo que puede llevar a la acumulación de

agua en condiciones de saturación. Esto podría afectar la estabilidad del estrato cuando se encuentra bajo carga, ya que los suelos con alta proporción de finos pueden ser propensos a la deformación plástica o incluso a la licuefacción en ciertas condiciones. A pesar de ser un estrato cohesivo, el exceso de finos puede reducir su resistencia al corte si se encuentra saturado. Si el estrato está seco, la capacidad de carga será mayor, pero si está mojado o saturado, la resistencia puede disminuir significativamente, lo que aumenta el riesgo de asentamientos diferenciales o fallos de la cimentación.

Granulometria Zona - 11

Grava % Arena % Finos %

65.16%

3.22%

1 2

Figura 15. Granulometría del suelo Zona 11

Análisis e interpretación:

En cuanto al estrato superior (1) la cantidad de grava (3.22%) es relativamente baja, lo que indica que es un suelo más fino y contiene principalmente partículas de arena (55.29%) y finos (41.49%). Este estrato tendrá una capacidad de drenaje moderada, pero también puede reducir la capacidad de carga del estrato si no tiene suficiente cohesión. Asi mismo, se observa una proporción elevada de finos (limo o arcilla), lo que aporta cierta cohesión al suelo. Los finos aumentan la capacidad de compresión del estrato,

pero también disminuyen su permeabilidad, lo que puede llevar a un drenaje más lento y potencialmente a un riesgo de colapso si no se controla la saturación.

Muy similar al Estrato 1, el Estrato 2 tiene una baja proporción de grava. Esto indica que el estrato es también arenoso, pero ligeramente más homogéneo presenta una mayor proporción de arena que el Estrato 01, lo que implica que es más permeable y permite un mejor drenaje. Los materiales finos se encuentran en menor cantidad en comparación con el Estrato 01. Esto puede hacer que el estrato sea menos cohesivo, pero más permeable, lo que beneficia la distribución de cargas al permitir que el agua no se acumule cerca de la cimentación.

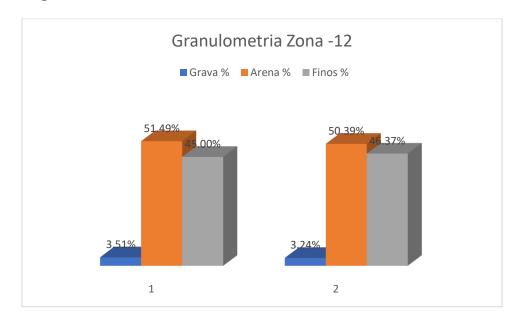


Figura 16. Granulometría del suelo Zona 12

Análisis e interpretación:

Los dos estratos en la calicata 12 presentan características similares, con una alta proporción de finos que les da cohesión, pero también los hace más susceptibles a la compresibilidad. Ambos estratos tienen una capacidad de carga moderada debido a la arena (permeable) y a los finos (cohesivos), pero si se encuentran saturados, su capacidad de carga puede disminuir. El diseño de la cimentación debe considerar

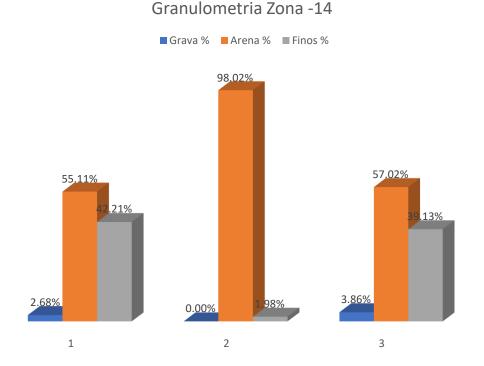
un control del drenaje y evaluar si se requieren cimientos evaluar si se requieren cimientos profundos para evitar asentamientos y asegurar la estabilidad estructural.

Granulometria - Zona 13

Grava % Arena % Finos %

60.24%

1 28%


Figura 17. Granulometría del suelo Zona 13

Análisis e interpretación:

Ambos estratos tienen un porcentaje significativo de fino (aproximadamente 41.52% en Estrato 01 y 36.10% en Estrato 02). Esto sugiere que los suelos pueden ser susceptibles a asentamientos diferenciales, especialmente si no se controla el drenaje o si el nivel freático sube. Los asentamientos pueden ser un factor limitante para la estabilidad de las cimentaciones superficiales. Ambos estratos presentan una capacidad de carga moderada debido a la proporción de finos. Si se cargan excesivamente, es probable que experimenten asentamientos si no se considera la resistencia adecuada del suelo.

Figura 18. Granulometría del suelo Zona 14

Estrato 01:

Grava (2.68%): El estrato tiene una baja proporción de grava. Este contenido sugiere que el estrato es principalmente arenoso con una pequeña cantidad de material grueso. Esto tiene una moderada capacidad de carga, pero no se considera lo suficientemente fuerte para resistir cargas pesadas sin riesgo de asentamientos.

Arena (55.11%): Predomina la arena, lo que indica que el estrato es principalmente arenoso, con buena permeabilidad. Sin embargo, la capacidad de carga es moderada, y la compresibilidad puede ser un factor limitante si no se gestiona adecuadamente el drenaje.

Finos (42.21%): La presencia de un porcentaje relativamente alto de finos indica que el estrato tiene una buena cohesión, pero también aumenta su compresibilidad. Este componente puede generar problemas si el estrato se satura con agua, ya que la deformación es más significativa en suelos con alta proporción de finos.

Estrato 02:

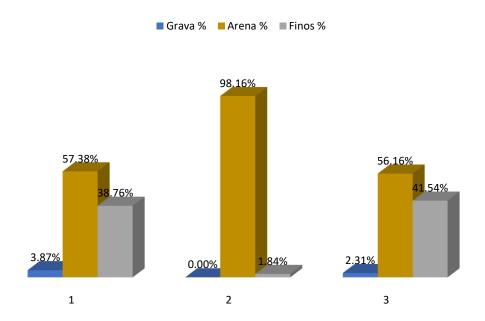
Grava (0.00%): Este estrato está compuesto principalmente por arena y casi no contiene grava, lo que lo hace un suelo muy permeable, pero con baja capacidad para soportar cargas sin deformarse. El bajo contenido de grava indica que este estrato tiene una resistencia al corte baja.

Arena (98.02%): Este estrato tiene una alta proporción de arena, lo que implica que es un suelo muy permeable y con baja cohesión. Esto puede ser favorable para drenaje, pero no es ideal para cimentaciones superficiales ya que la capacidad de carga es baja. Finos (1.98%): La cantidad de finos es extremadamente baja, lo que implica que el estrato tiene una baja cohesión. Si bien la permeabilidad es alta, este estrato tiene un comportamiento más inestable bajo carga y no es adecuado para soportar estructuras pesadas.

Estrato 03:

Grava (3.86%): Este estrato tiene una proporción moderada de grava, lo que indica que tiene una mayor capacidad de carga en comparación con los otros estratos. El contenido de grava proporciona mayor estabilidad y resistencia a las cargas aplicadas. Arena (57.02%): La proporción de arena es considerable, lo que sugiere que el estrato sigue siendo permeable, pero con una mayor capacidad de soporte de cargas en comparación con los estratos 01 y 02.

Finos (39.13%): La cantidad de fino en este estrato es significativa, lo que implica que es un suelo cohesivo, pero también puede ser compresible. Este contenido de finos puede generar asentamientos si la carga no se distribuye de manera adecuada, aunque la presencia de grava en mayor cantidad ayuda a contrarrestar parcialmente estos efectos.



Los estratos 01 y 02 presentan una mayor probabilidad de asentamientos diferenciales debido a su compresibilidad, especialmente en el caso del Estrato 02, que tiene una alta proporción de arena y baja cohesión.

El Estrato 02, debido a su alta permeabilidad y baja cohesión, no es adecuado para cimientos superficiales. Podría ser necesario reforzar este estrato con métodos como compactación o estabilización.

El contenido de fines en los Estratos 01 y 03 puede llevar a la saturación en condiciones de alta humedad, lo que podría generar deformaciones y afectaría la estabilidad de las cimentaciones superficiales.

Figura 19. Granulometría del suelo Zona 15

Análisis de la Composición de los Estratos

Estrato 01:

Grava (3.87%): Este estrato tiene una cantidad moderada de grava, lo que le otorga una buena resistencia al corte y una capacidad de carga moderada. Esto es favorable

para las cimentaciones, ya que puede soportar cargas sin generar asentamientos significativos.

Arena (57.38%): La arena es predominante en este estrato, lo que implica que el estrato tiene una buena permeabilidad. Aunque la arena no es tan cohesionada como los suelos arcillosos, su capacidad de carga es moderada.

Finos (38.76%): La presencia de un porcentaje alto de finos indica que este estrato es parcialmente cohesivo. Aunque los finos proporcionan cohesión, también aumentan la compresibilidad. Este estrato puede ser sensible al agua y, si se satura, puede experimentar deformaciones significativas bajo carga.

Estrato 02:

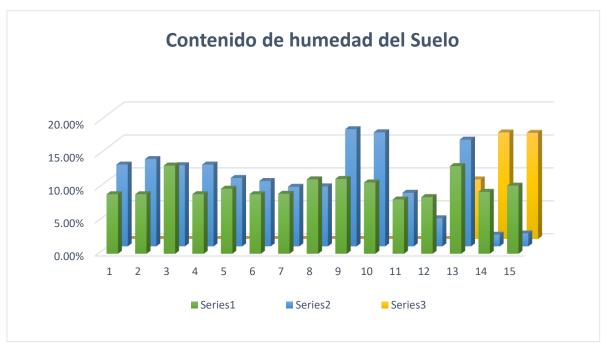
Grava (0.00%): Este estrato no contiene grava, lo que indica que es un suelo más homogéneo, en su mayoría compuesto por arena y finos. La capacidad de carga es más baja que en los otros estratos debido a la ausencia de material grueso, lo que afecta la estabilidad de las cimentaciones superficiales.

Arena (98.16%): Este estrato tiene una alta proporción de arena, lo que lo hace muy permeable, pero con baja cohesión. Los suelos arenosos, especialmente aquellos sin gravas, tienen una capacidad de carga limitada y son susceptibles a deformaciones bajo cargas significativas.

Finos (1.84%): La cantidad de finos es muy baja, lo que significa que este estrato es muy poco cohesivo y puede ser fácilmente deformable bajo carga, lo que limita su uso para cimentaciones superficiales.

Estrato 03:

Grava (2.31%): Este estrato tiene un contenido moderado de grava, lo que le otorga una mayor capacidad de carga y estabilidad en comparación con el estrato 02. La grava ayuda a mejorar la resistencia al corte y la compresión.



Arena (56.16%): Aunque este estrato tiene una alta proporción de arena, lo que sugiere que tiene buena permeabilidad, la capacidad de carga se ve equilibrada por la presencia de grava.

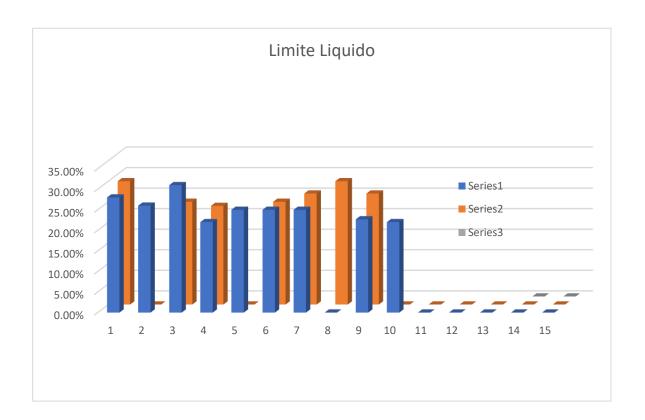
Finos (41.54%): El contenido de fines en este estrato es alto, lo que podría generar compresibilidad y afectar la estabilidad bajo carga. Aunque la presencia de grava mejora la capacidad de carga, el alto contenido de finos puede generar asentamientos si no se trata adecuadamente.

4.1.3.2. Caracteristicas fisicas del suelo contenido de humedad

Figura 20. Contenido de humedad del suelo del distrito de Santa

Análisis e interpretación:

El contenido de humedad en el Estrato 01 oscila entre el 8.24% y 13.39%, lo que indica que la humedad en este estrato es relativamente estable y moderada.


Se observa de la figura 19, que las calicatas C-11 y C-12 tienen un bajo contenido de humedad mientras el bajo contenido de humedad C-09, C-10 y C-13 este estrato es

más sensible a cambios en el contenido de humedad debido a la permeabilidad de la arena. El exceso de humedad podría generar asentamientos, mientras que la baja humedad podría mejorar la capacidad de carga, pero también puede hacer que el terreno se vuelva más susceptible a deformaciones si no se maneja adecuadamente Para el Estrato 02 este valor muestra una gran variabilidad, con un rango que va desde 4.26% hasta 17.78%

4.1.3.3. Caracteristicas físicas del suelo - Plasticidad

Figura 21. Limite liquido del suelo del distrito de Santa

Análisis e interpretación:

Los valores del límite líquido en el Estrato 1 varían entre 0.00% y 31.00%, con una tendencia general a ser moderados, es decir, ninguno de los valores supera significativamente el umbral del 30%. La Zona 3 (31.00%) se destaca por tener el valor

más alto (LL >30%) en este estrato, lo que sugiere la presencia de un suelo más plástico, con una mayor capacidad para deformarse bajo cambios de humedad. Las Zonas 11, 12, 13, 14 y 15 tienen valores de LL de 0.00%, lo cual indica que los suelos en estas áreas no muestran propiedades plásticas. Esto podría sugerir suelos de tipo granular o muy secos, como arenas o gravas no plásticas. En el estrato 2, los valores del límite líquido varían entre 0.00% y 30.00%, con un comportamiento más heterogéneo que el Estrato 01. Al igual que en el Estrato 01, varias zonas (Zonas 2, 5, 10, 11, 12, 13, 14 y 15) tienen valores de LL de 0.00%, lo que sugiere suelos no plásticos, posiblemente constituidos por materiales granulares como arenas o gravas.

Las zonas 3 y 8, indican una mayor plasticidad, lo que puede ser relevante en términos de la estabilidad de la cimentación. Este tipo de suelos tiende a ser más susceptible a la expansión o contracción cuando hay cambios en el contenido de humedad, lo que debe ser considerado al diseñar las fundaciones, ya que puede afectar la capacidad de carga y la estabilidad. Las Zonas 11, 12, 13, 14 y 15, que tienen un LL de 0.00%, son suelos no plásticos, lo que indica una estructura granular. Estos suelos suelen ser más estables en términos de humedad y tienen menor probabilidad de sufrir cambios volumétricos por variaciones de humedad, lo que podría facilitar la elección de cimientos directos.

En conclusión, la información sobre el límite líquido es fundamental para la toma de decisiones en la zonificación geotécnica, ya que permite una mejor comprensión del comportamiento de los suelos en diferentes zonas y su relación con las cimentaciones.

Figura 22. Limite plástico del suelo del distrito de Santa

Estrato 01:

Los valores de LP en el Estrato 01 varían entre 0.00% y 22.00%, mostrando un comportamiento que generalmente tiende hacia suelos poco plásticos (valores bajos de LP).

Zonas con LP alto (20-22%): Las Zonas 01, 07 tienen valores de LP elevados, indicando que estos suelos son relativamente plásticos. Esto sugiere la presencia de arcillas o suelos cohesivos, que podrían comportarse de manera expansiva o sensible a cambios de humedad.

Zonas con LP bajo (0.00%): Las Zonas 11, 12, 13, 14 y 15 tienen valores de LP de 0.00%, lo que indica la presencia de suelos no plásticos. Este comportamiento sugiere que los suelos en estas áreas son más granulares (arenas o gravas), sin una capacidad significativa para deformarse bajo cambios de humedad.

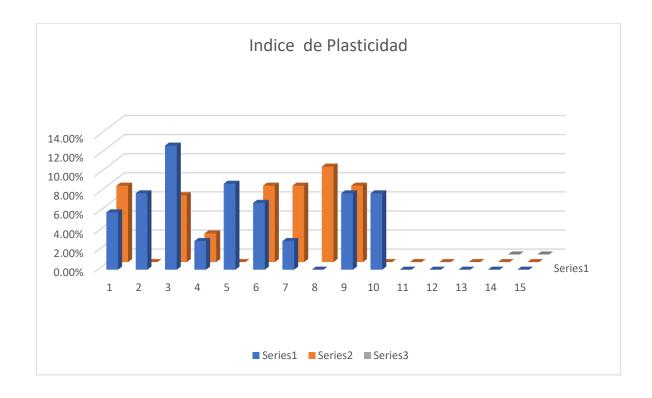
Estrato 02:

Los valores de LP en el Estrato 02 oscilan entre 0.00% y 22.00%, con una distribución que es similar al Estrato 01, aunque con algunas diferencias.

Zonas con LP alto (18-22%): En Zonas como 04, 07 y 09, los valores del LP indican la presencia de suelos plásticos, lo cual refleja la potencial cohesividad de estos suelos. Estos suelos podrían presentar comportamientos como la expansión bajo saturación o contracción cuando están secos, lo cual puede afectar la estabilidad de las cimentaciones si no se gestionan adecuadamente.

Zonas con LP bajo (0.00%): Las Zonas 02, 05, 08, 10, 11, 12, 13, 14 y 15 tienen LP de 0.00%, lo que significa que los suelos en estas zonas son no plásticos, es decir, más granulares y estables, sin riesgo de cambios volumétricos significativos debido a variaciones de humedad.

Estrato 03:


Los valores de LP en el Estrato 03 son predominantemente bajos o nulos, con algunas excepciones.

Zonas con LP alto (17-20%): Las Zonas 06, 07, y 09 tienen LP entre 17% y 20%, lo que indica que estos suelos podrían ser ligeramente plásticos, pero con una capacidad de cambio de volumen menor que en los suelos de los Estratos 01 y 02.

Zonas con LP bajo (0.00%): Las Zonas 11, 12, 13, 14 y 15 tienen valores de LP igual a 0.00%, lo que refuerza la presencia de suelos no plásticos, granulares o de baja cohesión en estas zonas.

Figura 23. Índice de Plasticidad del suelo del distrito de Santa

Estrato 1:

Valores de IP: Van desde 0.00% hasta 13.00%, mostrando una distribución diversa.

Zonas con IP alto (más de 10%): Las Zonas 03 (13.00%) y 05 (9.00%) presentan valores de IP relativamente altos. Esto indica que los suelos en estas áreas son plásticos y tienen una mayor capacidad de deformarse bajo cambios de humedad. Los suelos con un IP elevado suelen ser más sensibles a variaciones en la humedad, lo que puede provocar expansividad o contracción, afectando la estabilidad de las cimentaciones superficiales.

Zonas con IP bajo (0.00%): Las Zonas 11, 12, 13, 14 y 15 tienen un IP de 0.00%, lo que sugiere suelos no plásticos, que son generalmente granulares (como arenas o gravas), con muy poca capacidad para deformarse con cambios de humedad. Estos

suelos presentan una mayor estabilidad y, por lo tanto, son más adecuados para cimentaciones superficiales, ya que no se espera que sufran cambios volumétricos significativos.

Estrato 2:

Valores de IP: Oscilan entre 0.00% y 10.00%, con algunos valores relativamente altos. Zonas con IP alto (más de 8%): En Zonas como 06, 07 y 08, los valores de IP son de 8.00% o más, lo que indica que estos suelos tienen una plasticidad moderada. Aunque los valores no son extremadamente altos, se debe considerar que estos suelos podrían ser susceptibles a la expansión o contracción bajo condiciones de humedad cambiantes.

Zonas con IP bajo (0.00%): Las Zonas 02, 05, 10, 11, 12, 13, 14 y 15 tienen IP de 0.00%, lo que indica suelos granulares no plásticos. Estos suelos son más estables y presentan un comportamiento predecible frente a variaciones de humedad, siendo adecuados para cimentaciones superficiales.

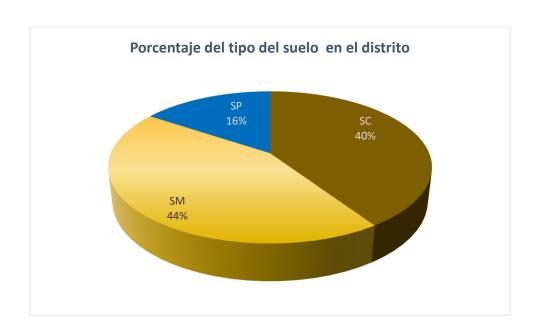
Estrato 3:

Valores de IP: Los valores en este estrato son más homogéneos, con un rango entre 0.00% y 10.00%.

Zonas con IP alto (más de 7%): La Zona 06 presenta un IP de 8.00%, lo que indica que el suelo en esta área tiene un comportamiento plástico moderado. A pesar de que no es un valor muy alto, su comportamiento frente a cambios de humedad podría requerir un análisis adicional para determinar su influencia en las cimentaciones.

Zonas con IP bajo (0.00%): Las Zonas 11, 12, 13, 14 y 15 tienen valores de IP de 0.00%, lo que refuerza la presencia de suelos no plásticos o granulares, ideales para cimentaciones superficiales debido a su mayor estabilidad frente a la humedad.

4.1.3.4. Clasificación del suelo


Tabla 36. Clasificación del suelo según calicatas del distrito de Santa

SECTOR	SUCS			
	ESTRATO 01	ESTRATO 02	ESTRATO 03	
CALICATA-01	SC	SC	-	
CALICATA-02	SC	SP	-	
CALICATA-03	SC	SC	-	
CALICATA-04	SM	SM	-	
CALICATA -	SC	SP	-	
05				
CALICATA -	SC	SC	-	
06				
CALICATA -	SM	SC	-	
07				
CALICATA -	SP	SC	-	
08				
CALICATA -	SC	SC	-	
09				
CALICATA -	SC	SM	-	
10				

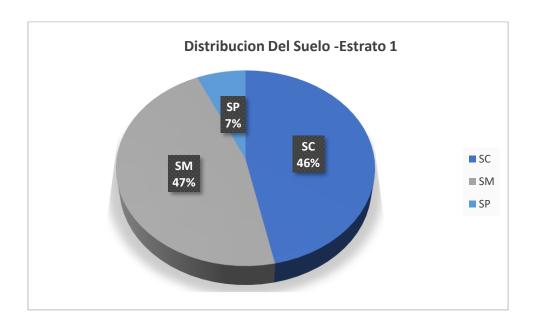
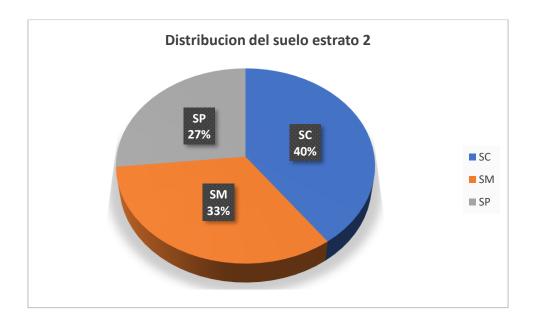

			BOTE
CALICATA -	SM	SM	-
11			
CALICATA -	SM	SM	-
12			
CALICATA -	SM	SM	
13			
CALICATA -	SM	SP	SM
14			
CALICATA -	SM	SP	SM
15			

Figura 24. Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa

Figura 25. Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa-estrato 1

El Estrato 01 tiene una composición mixta de suelos, con una preponderancia de suelos cohesivos y plásticos (SC y SM). Esto sugiere que la mayor parte del terreno en este estrato puede ser sensible a cambios en la humedad, con posibles riesgos de expansión y contracción en los suelos SC y sensibilidad a la saturación en los suelos SM.


Los suelos SC pueden requerir cimentaciones profundas o técnicas de estabilización para evitar los problemas derivados de la plasticidad y la expansividad. Además, puede ser necesario mejorar la capacidad portante de estos suelos antes de realizar una cimentación.

El suelo SP, aunque en menor proporción, ofrece buena estabilidad y es adecuado para cimentaciones superficiales. Sin embargo, siempre es importante realizar un análisis

adicional para asegurar que no haya otras condiciones que puedan comprometer su estabilidad, como erosión o asentamientos por vibraciones.

Figura 26. Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa- estrato 2

El Estrato 02 muestra una combinación de suelos cohesivos (SC), limosos arenosos (SM) y arenosos bien graduados (SP). Los suelos SC requieren medidas de estabilización o cimentaciones profundas debido a su plasticidad y expansión. Los suelos SM son adecuados para cimentaciones superficiales, pero deben ser controlados por la humedad, y los suelos SP son estables y aptos para cimentaciones superficiales, aunque se deben prevenir problemas de erosión. La estrategia de cimentación dependerá de la proporción y distribución de estos suelos en el terreno, así como de las condiciones locales de humedad y drenaje.

Figura 27. Porcentaje de incidencia del tipo de suelo según SUCS en el distrito de Santa- estrato 3

Un suelo SM es un suelo arenoso y limoso, con baja plasticidad, lo que le da una buena capacidad de drenaje y una estabilidad razonable en comparación con suelos muy cohesivos o arcillosos. Los suelos SM no se deforman mucho cuando se humedecen o se secan, lo que los hace menos propensos a los movimientos expansivos o a la contracción con la variación de la humedad.

4.1.3.4. Propiedades mecánicas del suelo

Tabla 37. Ensayo de Corte Directo

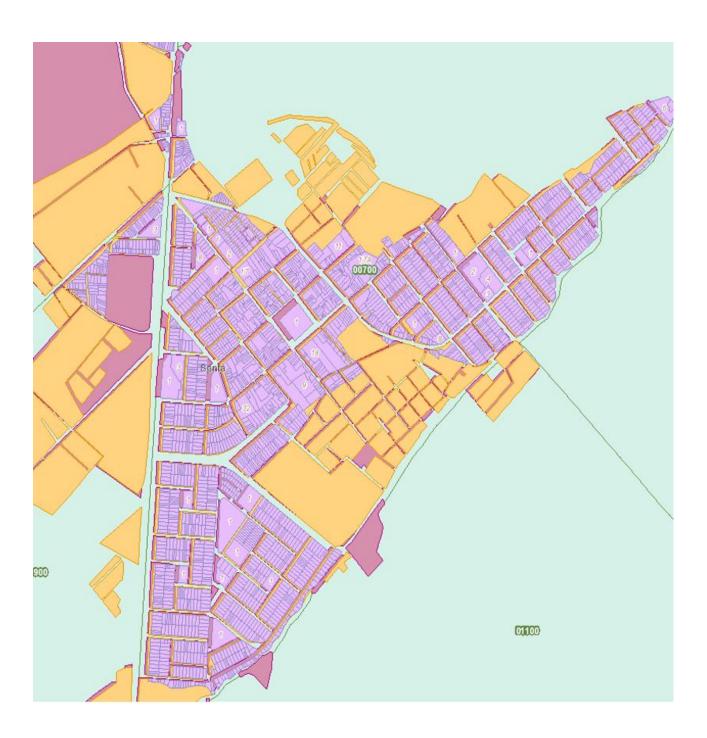
Calicata	Clasificación	Ang. de	Cohesión (Kg/cm2)
		fricción(Ø)	
C-01	SC	32.9°	0.1702
C-02	SC	29.8°	0.234
C-03	SC	31.7°	0.1369
C-04	SM	37.21°	0.1347
C-05	SC	36.72°	0.0946
C-06	SC	29.17°	0.166
C-07	SM	34.34°	0.1153
C-08	SP	32.32°	0
C-09	SC	35.52°	0.2813
C-10	SC	34.07°	0.0842
C-11	SM	36.26°	0.2933
C-12	SM	36.02°	0.2001
C-13	SM	31.64°	0.2755
C-14	SM	36.84°	0.1927
C-15	SM	31.91°	0.237

Análisis e interpretación:

De la tabla se observa que, las zonas con ángulos de fricción más altos (como ZONA-04: 37.21° y ZONA-05: 36.72°) tienen mayor resistencia al corte, lo que es favorable para la cimentación superficial o pilotes cortos. Estos valores indican que los suelos

en estas zonas son bastante densos y compactos, lo que contribuye a una alta capacidad portante. Para las zonas con ángulos más bajos, como ZONA-10 (25.95°) y ZONA-11 (26.8°), tienen una resistencia al corte más baja, lo que indica que los suelos son menos estables y podrían requerir cimentaciones profundas para asegurar la estabilidad estructural.

Asi mismo las Zonas con cohesión mayor a cero, como ZONA-01 (0.1702 kg/cm²), ZONA-02 (0.234 kg/cm²), y ZONA-09 (0.2813 kg/cm²), indican que los suelos tienen una resistencia significativa al deslizamiento debido a la presencia de partículas finas como arcillas o limos. Esto sugiere que estas zonas tienen suelos más cohesivos, adecuados para cimentaciones superficiales si se manejan adecuadamente. Y para las zonas con cohesión cero, como ZONA-08, ZONA-10, ZONA-11, ZONA-12, ZONA-13, ZONA-14, y ZONA-15, indican que los suelos son arenosos o limosos, y no tienen fuerzas de cohesión significativas. Esto puede implicar que estos suelos son más susceptibles al deslizamiento bajo cargas pesadas o cambios en la humedad, y por lo tanto, requieren un análisis detallado para determinar si se debe utilizar una cimentación profunda.


El análisis de los ángulos de fricción (Ø) y las cohesiones (c) de cada zona proporciona una visión detallada sobre la resistencia de los suelos y su comportamiento frente a cargas. En suelos cohesivos (SC), las cimentaciones superficiales son viables, pero es importante considerar que en zonas con baja cohesión (c) y valores bajos de fricción (Ø), como en las zonas SM y SP, puede ser necesario recurrir a cimentaciones profundas. Además, las zonas con cohesión cero (arenosas) deben ser analizadas cuidadosamente para determinar el tipo de cimentación más adecuado, especialmente cuando se espera que la estructura soporte grandes cargas.

Según los resultados de corte directo se tendría lo siguiente:

4.1.3.5.Zonificación

Figura 28. Zonificación según el tipo de suelo del distrito de Santa

PE-12

Min Gonzalde Pill

And Contact Values of the Contact Value of the

Figura 29. Zonificación según el tipo de suelo- calles del distrito de Santa

4.1.4 Contrastación de hipótesis: Zonificación Geotécnica

En cuanto a la hipótesis planteada en la investigación es ACEPTADA ya que, queda demostrado que la zonificación geotécnica es crucial para el diseño de cimentaciones, y los datos obtenidos confirman que el tipo de suelo y sus propiedades influyen directamente en la capacidad de carga del terreno, lo que apoya la hipótesis alternativa (H₁) indicando que para el diseño de cimentaciones en el distrito de Santa, es fundamental considerar las características específicas de cada tipo de suelo, especialmente los ángulos de fricción y las cohesiones.

4.2.Discusión

Considerando la capacidad portante del suelo encontrado por Tarrillo (2021) este osciló entre 0.59 kg/cm² y 1.15 kg/cm². Estos valores son relativamente bajos en

comparación con los resultados obtenidos en nuestra investigación, donde la capacidad portante admisible varía entre 0.33 kg/cm² y 0.90 kg/cm² a 0.80 m de profundidad y aumenta considerablemente con la profundidad, alcanzando valores de hasta 0.90 kg/cm² a 2.00 m. Esta diferencia puede explicarse por las distintas características de los suelos en ambas zonas. La zona oeste del distrito de Chota, de acuerdo con los resultados de Tarrillo, tiene suelos más finos y de mayor plasticidad, lo que lleva a una menor capacidad portante. Por otro lado, en el distrito de Santa, los suelos SC y SM son más estables y presentan una mayor resistencia, lo que da como resultado una capacidad portante más alta.

Con relación a las Características del Suelo en el trabajo de Peche G. (2024), se identificaron diferentes tipos de suelos a lo largo de las profundidades estudiadas. A 0.80 m y 1.20 m de profundidad, los suelos observados fueron principalmente finos como CL y CL-ML, que son típicamente suelos arcillosos con plasticidad moderada. Sin embargo, a partir de 1.50 m, se observó un cambio en la composición del suelo, pasando a una mayor proporción de suelos cohesivos y no cohesivos como SC (suelo arcilloso no plástico), SM (suelo arenoso limoso) y SM-SC (mezcla de suelos arenosos y arcillosos). Este cambio en la composición de los suelos a mayores profundidades se alinea con los hallazgos de la investigación, donde también se identificaron suelos SC y SM a mayor profundidad en las calicatas realizadas. A continuación se adjunta en anexos el plano con la clasificación de los suelos por cada punto de calicatas extraídas alrededor de la zona urbana del distrito de Santa.

Al comparar los resultados obtenidos en nuestra investigación con los de Peche G. (2024), podemos observar que hay una consistencia en los patrones de comportamiento de los suelos, aunque algunas diferencias pueden atribuirse a factores locales

específicos, como variaciones en la profundidad de los suelos, la composición de los materiales, y la heterogeneidad de las zonas muestreadas. En general, los resultados indican que los suelos de la zona presentan una capacidad portante admisible razonablemente adecuada para cimentaciones de estructura media, pero con una variabilidad importante que depende de la profundidad y tipo de zapata seleccionada

En cuanto a la **profundidad de la cimentación** y el **ancho de la zapata**, en el estudio de **Tarrillo (2021)** se hace evidente que la capacidad portante varía según la profundidad, similar a los resultados obtenidos en nuestra investigación. En la **zona de Santa**, los suelos más profundos, como los **SC** y **SM**, muestran un comportamiento muy favorable para cimentaciones de mayor profundidad, con una capacidad portante que aumenta conforme se incrementa la profundidad de la zapata. Este patrón coincide con los resultados obtenidos en la investigación de Tarrillo, donde a mayor profundidad también se observó un aumento en la capacidad portante. Sin embargo, es relevante señalar que la **profundidad óptima de cimentación** dependerá también de otros factores como el tipo de estructura a construir y la distribución de cargas. Por otro lado, en referencia a la Capacidad Portante Admisible (Qadm), los datos obtenidos en esta investigación sobre la capacidad portante admisible muestran un comportamiento similar al de los resultados de Peche G. (2024), aunque con algunas variaciones. En ambos casos, la capacidad portante aumenta a medida que aumenta la profundidad de cimentación y la anchura de la zapata.

A 0.80 m de profundidad, se obtuvo una capacidad portante de 0.33 kg/cm² para suelos SC, que está dentro del rango de 0.29 kg/cm² a 0.84 kg/cm² reportado por Peche G. (2024). Este comportamiento es coherente con lo esperado, dado que los suelos superficiales más finos, como los CL y CL-ML, tienden a tener una menor

capacidad de carga en comparación con suelos más gruesos y compactos como los SC o SM.

- A 1.20 m de profundidad, los suelos SC y SM en nuestra investigación mostraron una capacidad portante de 0.39 kg/cm² a 0.56 kg/cm², mientras que Peche G. (2024) reporta un rango de 0.40 kg/cm² a 1.58 kg/cm². Esta diferencia podría explicarse por la heterogeneidad de los suelos y sus características locales, que varían dependiendo de factores como la compactación, la distribución de partículas y el contenido de agua.
- A mayor profundidad (1.50 m a 2.00 m), la capacidad portante en nuestra investigación aumentó progresivamente, alcanzando valores de 0.47 kg/cm² a 0.90 kg/cm² a 2.00 m. Esto se encuentra dentro del rango de 0.53 kg/cm² a 3.11 kg/cm² encontrado por Peche G. (2024). Los valores más altos en la investigación de Peche podrían estar asociados con la mayor cohesión y densidad de los suelos en esas profundidades, particularmente los suelos SC y SM-SC, que tienden a ser más resistentes a la compresión.

CAPÍTULO V CONCLUSIONES Y RECOMENDACIONES

5. CAPITULO V: CONCLUSIONES Y RECOMENDACIONES

5.1. Conclusiones

- Se determinó que los suelos presentes en el distrito de Santa tienen una capacidad de carga admisible que varía entre 0.33 kg/cm² y 0.90 kg/cm² a una profundidad de 0.80 m, con un incremento progresivo de la capacidad portante conforme aumenta la profundidad del suelo. A profundidades mayores a 1.50 m, la capacidad portante se incrementa considerablemente, alcanzando hasta 0.90 kg/cm² a 2.00 m. Estos valores indican que los suelos son adecuados para cimentaciones superficiales y medianas, especialmente en zonas donde predominan los suelos SC y SM, que son más estables y tienen una mayor resistencia a la compresión.
- Los suelos en la zona urbana del Distrito de Santa presentan una notable
 heterogeneidad en cuanto a humedad, plasticidad y características de los estratos.
 - Se ha logrado obtener las zonas geotécnicas en la zona urbana del distrito de Santa lo cual La zonificación geotécnica realizada en la zona urbana del Distrito de Santa permitió clasificar el territorio según los tipos de suelos y sus características geotécnicas, facilitando la identificación de áreas con condiciones favorables para la cimentación de estructuras. En base a los resultados obtenidos a partir de las calicatas y los ensayos realizados, se identificaron suelos de tipo SC (arcillosos no plásticos) y SM (arenosos limosos) a profundidades significativas, lo que permite clasificar las zonas en categorías con diferentes niveles de capacidad de carga admisible asi mismo el contenido de humedad oscila entre el 1.76% y el 17.78%, siendo

relativamente constantes y dentro de un rango medio. el índice de plasticidad varía entre 3% y 13%

5.2. Recomendaciones

- Se recomienda a las autoridades competentes, que la zonificación geotécnica obtenida en esta investigación sea utilizada como base para la planificación y ejecución de proyectos de construcción en la zona urbana del distrito de Santa.
 Esta zonificación permitirá seleccionar el tipo de cimentación más adecuado en función de la capacidad de carga admisible de los suelos, optimizando los costos de construcción y garantizando la estabilidad estructural a largo plazo.
- Dado que las **condiciones ambientales** como la humedad y los cambios estacionales pueden afectar las propiedades de los suelos, se recomienda realizar un **monitoreo continuo** de las condiciones del terreno, especialmente en áreas propensas a cambios en la humedad o en la actividad sísmica. Este monitoreo ayudará a ajustar el diseño de cimentaciones de manera adecuada y garantizar la durabilidad de las Estructuras.

CAPÍTULO VI REFERENCIAS BIBLIGRÁFICAS

6. CAPITULO VI: REFERENCIAS BIBLIOGRÁFICAS

- (ANA), A. N. (2021). Estudio sobre la susceptibilidad a movimientos de tierra en la región Áncash. Lima: (ANA).
- (INEI), I. N. (2021). Censos nacionales 2021: Resultados preliminares de población y vivienda. Lima: INEI.
- (MINEM), M. d. (2022). Impacto de la zonificación geotécnica en el costo de mantenimiento de infraestructuras. *MINEM*, 15(2), 34-45.
- (UNI), U. N. (2022). Estudio de las condiciones geotécnicas en zonas urbanas del distrito de Santa, Áncash. *Revista de Ingeniería Civil*, 12(4), 33-40.
- ASTOCONDOR PEÑARRIETA, D. (2020). ESTUDIO DE ZONIFICACIÓN DE LOS SUELOS PARA FINES DE CIMENTACIÓN SUPERFICIAL DEL SECTOR PÓMAPE DEL DISTRITO DE MONSEFÚ CHICLAYO. LIMA: USMP.
- Baltodano Goulding, R. (2023). Zonificación geotécnica mediante estadísticos descriptivos para suelos de Costa Rica. *Tecnología en Marcha*, 172-201.
- Bruno, F. P. (2022). ZONIFICACIÓN DE SUELOS PARA EL DISEÑO DE

 CIMENTACIONES SUPERFICIALES EN EL SECTOR CHOC CHOC,

 DISTRITO DE MOCHE, TRUJILLO, LA LIBERTAD. Trujillo: UPAO.
- Castillo, L. (2020). Condiciones topográficas y geológicas del distrito de Santa,

 Ancash. Fundación Nacional de Ingeniería Civil. Santa.
- Castillo, M. (2019). Estudio de las condiciones geotécnicas y propuestas para la mejora de cimentaciones en la región de Áncash, Perú. *Revista de Ingeniería y Construcción*, 12(1), 75-82.
- Chavez, P. &. (2018). Cimentaciones en terrenos urbanos: Normativas y experiencias en el Distrito de Santa. *Revista de Ingeniería y Construcción*, 14(2), 61-70.

- D2487-17, A. (2017). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Miami: ASTM International.
- Das, B. M. (2015). Fundamentals of Geotechnical Engineering. Fundamentals of Geotechnical Engineering: Mexico: Ediciones OVA.
- Diego Cashpa, H. G. (2022). Estudio de zonificación geotécnica con fines de diseño de cimentación superficial en el Asentamiento Humano Nuevo Moro, Ancash, 2022. MORO: UCV.
- Gamarra, F. (2021). Evaluación geotécnica en la zona urbana del Distrito de Santa:

 Criterios para la selección de cimentaciones. Chimbote.
- Gómez, F. (2022). Zonificación geotécnica y su impacto en la construcción urbana. Ingeniería y Desarrollo.
- González, J. (. (2020). *undamentos de geotecnia y cimentación*. Lima: Editorial Universitaria.
- Gutiérrez, J. &. (2018). Zonificación geotécnica para la seguridad de las construcciones urbanas en Chile. *Revista de Ingeniería Geotécnica*, , 34(2), 104-112.
- Hernández Aguilar, M. A. (2023). Solución geotécnica para el suelo de cimentación de las 7 torres de la villa panamericana. *PERFILES DE INGENIERÍA VOL19N19*, 91-108.
- Hernández Sampieri, R. F. (2017). Metodología de la Investigación. mexico.
- Ibarra, K. A. (2019). Caracterización geotécnica de un sector de la ciudad de Neuquén.

 Neuquén.
- Jorge, O.-R. (2016). Caracterización del subsuelo y análisis de riesgos geotécnicos asociados a las arcillas expansivas de la ciudad de Tuxtla Gutiérre. México.:

 Universidad Nacional Autónoma de México.

- López, V. (2018). Análisis geológico y tectónico de la zona de Santa, Áncash. *Journal of Geological Studies*, 34(2), 102-118.
- Ministerio de Vivienda, C. y. (2020). Informe sobre la implementación de estudios geotécnicos en la región Áncash. *Revista de Infraestructura*, 21(3), 58-62.
- Morales, J. &. (2021). valuación geotécnica para la planificación urbana: El caso de Santa, Áncash. *Revista de Ingeniería Geotécnica*, 15(3), 42-50.
- Nieto, J. (27 de 08 de 2017). perito. Obtenido de perito: https://perito.biz/emociones/
- Palacio Pacheco, O. V., & Carrillo, C. (2021). Zonificación Geotécnica De Los Suelos
 De La Ciudad De Valledupar Mediante Utilización De Un Sig. *Revista Politécnica, vol. 17, núm. 33, pp. 109-119, 2021*, núm. 33, pp. 109-119, 2021.
- Peche Torres, G. (2024). Zonificación geotécnica con fines de cimentación en la Lotización El Bosque, sector Sialupe Huamantanga, valle Chancay, distrito de Lambayeque. Lambayeque: UNPRG.
- Pérez, L. (2019). studios geotécnicos y su relevancia en la seguridad estructural de edificaciones. *Revista Internacional de Construcción*, 10(2), 77-85.
- Pérez, M. &. (2020). Impacto de la zonificación geotécnica en la seguridad estructural en Bogotá. *Revista Internacional de Ingeniería*, 12(4), 110-119.
- Pérez, M. &. (2020). Impacto de la zonificación geotécnica en la seguridad estructural en Bogotá. *Revista Internacional de Ingenieria Civil*, 12(4), 110-119.
- Ríos, M. &. (2020). El impacto de la falta de estudios geotécnicos en las obras de infraestructura urbana. Lima: Revista Peruana de Ingeniería Civil,.
- Sánchez, V. (2018). La importancia de los estudios geotécnicos en la prevención de fallos estructurales. *Boletín Técnico de Ingeniería Civil*, 13(5), 21-28.
- Schnaid, F. (2010). Geotechnical engineering: Theoretical concepts and applications.

 CRC Press. New York: Taylor & Francis Group.

- Tarrillo Bustamante, D. M. (2021). Evaluación de suelos con fines de cimentación en los sectores 1 y 5 de la ciudad de Chota, 2021. Chota: Universidad Nacional Autónoma de Chota.
- Terzaghi, K. &. (1948). *Soil Mechanics in Engineering Practice*. New York: John Wiley & Sons, Inc.
- Terzaghi, K. P. (1996). Fundamentals of soil mechanics (3rd ed.). Washintong: John Wiley & Sons.
- Torres, A. (2021). zonificación geotécnica y su rol en el desarrollo urbano seguro. 12(1), 58-65.: Ediciones Tecnológicas.
- Vásquez, R. (2021). Estudio geotécnico y zonificación para la seguridad estructural en Trujillo. *Revista Peruana de Ingeniería Geotécnica*, 14(1), 23-32.
- Vásquez, R. (2021). Estudio geotécnico y zonificación para la seguridad estructural en Trujillo, Perú. *Revista Peruana de Ingeniería Geotécnica*, 14(1), 23-32.

7.CAPITULO VII: ANEXOS

CAPÍTULO VII ANEXOS

ANEXO 1 REGISTROS DE SONDAJES DPL

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: Fecha: Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	ω υ c	Ф (°) suelo	ENS	AYO DE PENET	RACION DINAMICA LIGERA
		S	friccionante	Z	Nd_{pl}	0.00 10.00 20.00 30.00 40.00 50.00
				0.10	9.00	l
				0.20	9.00	
				0.30	6.00	
				0.40	5.00	
-0.50			27.65	0.50	3.00	0.50
				0.60	3.00	
	Arenas arcillosas, de granulometria fina,			0.70	7.00	
	presenta plasticidad, y tiene un porcentaje			0.80	14.00	
	considerable de finos.			0.90	13.00	
-1.00		sc	29.83	1.00	15.00	1.00
				1.10	12.00	<u> </u>
				1.20	11.00	/
				1.30	10.00	
<u> </u>				1.40	12.00	
-1.50			31.12	1.50	15.00	1.50
——				1.60	18.00	
				1.70	11.00	
\vdash				1.80	10.00	
2.22			00.40	1.90	12.00	
-2.00			30.49	2.00	15.00	2.00
				2.10	12.00	
				2.20	10.00 15.00	
				2.40	11.00	/
-2.50	Arenas arcillosas, de granulometria fina,	sc	28.42	2.50	9.00	2.50
-2.50	presenta plasticidad, y tiene un porcentaje considerable de finos.	30	20.42	2.60	10.00	2.50
	considerable de linos.			2.70	8.00	
\vdash				2.80	9.00	·
				2.90	8.00	l <u> </u>
-3.00			28.42	3.00	6.00	3.00
0.00			20.42	3.10	8.00	\
				3.20	10.00	
—				3.30	10.00	1
				3.40	17.00	1 ,
-3.50			32.32	3.50	15.00	3.50
5.50			32.02	3.60	. 5.00	1
 				3.70		1
				3.80		1
 				3.90		1
				4.00		4.00

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 54 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Distrito Santa, Provincia Santa, Ancash Localización

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: Fecha:

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Φ (°) suelo	ENSA	AYO DE PENET	RACI	ON	DINA	AMIC	A LIC	3ERA
, ,		S	friccionante	Z	Nd_{pl}	0.00	1.00 1	10.00 2	20.00 3	30.00 40	50.00
				0.10	11.00	t		\			
				0.20	15.00	1		}			
				0.30	13.00	†		1/			
				0.40	10.00	1		ł			
-0.50			27.65	0.50	9.00	0.50		┤	+	+	\vdash
	Arenas arcillosas, de granulometria fina,			0.60	8.00	†	4	(I			
	presenta plasticidad, y tiene un porcentaje			0.70	10.00	†		}			
	considerable de finos.			0.80	8.00	†	1	/			
		sc		0.90	7.00	†	l /				
-1.00			27.65	1.00	7.00	1.00	\vdash	+	+	-	\vdash
				1.10	7.00	t					
				1.20	8.00	t	}				
				1.30	9.00	t		 			
				1.40	11.00	t		}			
-1.50			27.6	1.50	10.00	1.50	-	-	₩		\vdash
			27.10	1.60	9.00	†		/			
				1.70	8.00	†					
				1.80	9.00	†)			
				1.90	6.00	t	$ \langle$				
-2.00			27.6	2.00	8.00	2.00	\longrightarrow		—	-	Ш
2.00			27.10	2.10	7.00	t	{				
				2.20	10.00	†	۱ '	¥			
				2.30	9.00	t		4			
				2.40	9.00	†		ļ			
-2.50			31.1	2.50	10.00	2.50		1	↓	<u> </u>	Ш
2.00	Conformado por arena mal		31.1	2.60	12.00	ł		1			
	graduada,			2.70	13.00	ł		11			
	donde predominan en gran			2.80	14.00	†		1			
	cantidad las	SP		2.90	17.00	ł		\			
-3.00	arenas, medianamente	0.	37.4	3.00	24.00	3.00		_	\searrow	<u> </u>	Ш
0.00	compactado de color		<i>57</i> .∓	3.10	28.00	†			$ \rangle$.	
	pardo.			3.20	26.00	†			/		
				3.30	22.00	t			1		
				3.40	24.00	ł			\downarrow		
-3.50			34.5	3.50	30.00	3.50	L	_	\perp	\perp	\square
5.50			54.5	3.60	17.00	t			/		
				3.70	18.00	t					
				3.80	22.00	ł			\		
				3.90	22.00	ł					
				4.00		4.00			Ш.		
OBSERVACION	F0			4.00							

Se paró el ensayo al contacto con una piedra, 55 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

2022

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas:Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger JuanCalicata:3Fecha:Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Φ (°) suelo		AYO DE PENET	RACI	ON E	DINAMI		
		S	friccionante	Z	Nd _{pl}	0.00	.00 10.	00 20.00	30.00	40.00 50.00
				0.10	17.00					
				0.20	17.00					
				0.30	10.00					
				0.40	10.00					
-0.50			29.83	0.50	11.00	0.50				
				0.60	12.00			}		
				0.70	10.00		1	(
	Arenas arcillosas, de granulometria fina, presenta plasticidad, y tiene			0.80	12.00			}		
	un porcentaje considerable de			0.90	10.00			(
-1.00	finos, contenido de humedad	SC	29.14	1.00	11.00	1.00		-		
	13.39%.			1.10	9.00	1				
				1.20	13.00)		
				1.30	10.00		1	/		
				1.40	9.00		1			
-1.50			27.6	1.50	10.00	1.50	-)			
			1.60	9.00		1				
			1.70	9.00		l <i>†</i>				
			1.80	7.00						
				1.90	6.00					
-2.00		29.1	29.1	2.00	12.00	2.00				
				2.10	10.00					
				2.20	10.00					
				2.30	10.00		-			
				2.40	8.00		l fl			
-2.50	Arenas arcillosas, de granulometria		27.6	2.50	8.00	2.50	 			
	fina, presenta plasticidad, y tiene			2.60	6.00	4	(
	un porcentaje considerable de			2.70	8.00	4	\			
	finos, contenido de humedad			2.80	11.00	4	/)		
	12.31%			2.90	8.00		1			
-3.00		sc	30.5	3.00	10.00	3.00				
				3.10	15.00			\rangle		
				3.20	10.00	4		(
				3.30	12.00	4		<i>†</i>		
				3.40	10.00	4				
-3.50			33.4	3.50	10.00	3.50				
				3.60	17.00	4				
				3.70	18.00	4				
				3.80		4				
				3.90		4				
OBSERVACIONI				4.00		4.00				

Se paró el ensayo al contacto con una piedra, 56 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Fecha: Calicata: 4 Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Ф (°) suelo			RACION DINAMICA LIGERA
		S	friccionante	Z	Nd _{pl}	0.00 10.00 20.00 30.00 40.00 50.00
				0.10	10.00	1
				0.20	10.00	<u> </u>
				0.30	7.00	<u> </u>
				0.40	7.00	<u> </u>
-0.50			28.42	0.50	5.00	0.50
				0.60	5.00	f I $rack rack ra$
				0.70	8.00	f I $ig $ $ig $ $ig $ $ig $ $ig $
	Arenas Limosas, con arena en un			0.80	15.00	f I = f I =
	68.33 % y un 25.39 % de finos, presenta			0.90	14.00	I (
-1.00	plasticidad baja, de color	SM	30.49	1.00	16.00	1.00
	beiggs.			1.10	13.00	<u>I</u> <u> </u>
	20.990.			1.20	13.00	I
				1.30	12.00	1 /
				1.40	10.00	1 /
-1.50			25.0	1.50	8.00	1.50
				1.60	6.00	1 /
				1.70	5.00	1 (
				1.80	6.00	1 }
				1.90	5.00	1
-2.00			27.6	2.00	5.00	2.00
				2.10	5.00	1
				2.20	11.00	1 }
				2.30	9.00	1 1 1 1 1
				2.40	8.00	1 (
-2.50			29.1	2.50	10.00	2.50
	Arenas Limosas, con arena en un			2.60	11.00	1
	66.61% y			2.70	9.00	1 {
	un 31.19 % de finos, presenta			2.80	10.00	1 \
	plasticidad baja, de color beiggs.	SM		2.90	13.00	1
-3.00	beiggs.		29.1	3.00	10.00	3.00
				3.10	8.00	1 {
				3.20	12.00	1
				3.30	12.00	1
				3.40	14.00	1
-3.50			33.4	3.50	14.00	3.50
				3.60	17.00	1 \
	 			3.70	18.00	1 1 1 1
				3.80		1
				3.90		1
				4.00		4.00

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 55 golpes para 10 cm (salta el martillo)

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: Fecha: Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	s U C	Ф (°) suelo	ENS	SAYO DE PENET	RACION I	DINAMIC	A LIGEI	RA
		S	friccionante	Z	Nd _{pl}	0.00 10	0.00 20.00 3	90.00 40.00	50.00
				0.10	15.00		1		
				0.20	10.00		/		
				0.30	10.00				
				0.40	10.00		 		
-0.50			31.73	0.50	9.00	0.50			-
				0.60	10.00		\		
				0.70	14.00		$ \setminus $		
	Arenas arcillosas, de granulometria			0.80	18.00		}		
	fina, presenta plasticidad, y tiene	SC		0.90	17.00		{		
-1.00	un porcentaje considerable de		32.89	1.00	21.00	1.00	\longrightarrow		-
	finos.			1.10	16.00				
				1.20	16.00				
				1.30	16.00				
				1.40	15.00		{		
-1.50			34.0	1.50	16.00	1.50	+		-
				1.60	20.00				
				1.70	20.00		 		
				1.80	16.00				
				1.90	16.00				
-2.00			31.7	2.00	12.00	2.00	+		\dashv
				2.10	13.00				
				2.20	14.00				
				2.30	17.00				
				2.40	19.00		 		
-2.50			35.0	2.50	21.00	2.50	- 		\dashv
	Conformado por arena mal			2.60	22.00	1	}		
	graduada,			2.70	22.00	1	ļ		
	donde predominan en gran			2.80	18.00		1 1		
	cantidad las arenas, medianamente compactado	SP		2.90	17.00				
-3.00	de color		34.5	3.00	18.00	3.00	\longrightarrow		\dashv
	pardo.			3.10	15.00	1	$ \langle $		
	F			3.20	20.00	1			
				3.30	24.00	1			
				3.40	24.00	1			
-3.50			36.0	3.50	23.00	3.50	++		\dashv
				3.60	25.00	1			
				3.70	18.00	1	{		
	 			3.80	23.00	1	\		
		Ī		3.90		1			
				4.00		4.00			

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 52 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas:Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger JuanCalicata:Fecha:Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Ф (°) suelo	ENS	AYO DE PENET	RACI	ON DINAMICA LIGERA
()		s	friccionante	Z	Nd_{pl}	0.00	.00 10.00 20.00 30.00 40.00 50.00
				0.10	16.00	•	
				0.20	16.00		
				0.30	9.00		
				0.40	9.00		
-0.50	Arenas arcillosas, con arena en un		30.49	0.50	10.00	0.50	
	66.33 % y	SC		0.60	13.00		
	un 33.67 % de finos, presenta plasticidad, de color			0.70	11.00		│
	piasticidad, de coloi beiggs.			0.80	13.00		
	beiggs.			0.90	11.00		
-1.00			30.49	1.00	12.00	1.00	
				1.10	10.00		
				1.20	15.00		
				1.30	13.00		
				1.40	11.00		
-1.50			27.6	1.50	11.00	1.50	
			1.60	9.00		 	
			1.70	9.00			
	-2.00			1.80	8.00		
				1.90	7.00		
-2.00		28.4	2.00	14.00	2.00		
			2.10	9.00			
				2.20	9.00		•
				2.30	9.00		
	A			2.40	10.00		
-2.50	Arenas arcillosas, con arena en un		27.6	2.50	10.00	2.50	
	80.98 % y un 18.87 % de finos, presenta			2.60	7.00		(
	plasticidad, de color			2.70	8.00		
	beiggs.			2.80	11.00		
	33	SC		2.90	8.00		
-3.00			31.1	3.00	11.00	3.00	
				3.10	16.00		
				3.20	11.00		
				3.30	13.00]	<mark>/</mark>
				3.40	11.00	I	
-3.50			35.0	3.50	11.00	3.50	
			3.60	27.00	l		
				3.70	17.00	l	1
				3.80]	
				3.90]	
		<u> </u>		4.00		4.00	

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 51 golpes para 10 cm (salta el martillo)

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: Calicata: Fecha: 7 Set-24

Arenas Limosas, con arena en un 59.09 % y un 38.78 % de finos, presenta plasticidad baja, de color beiggs. -1.00 -2.00 Arenas arcillosas, con arena en un 66.33 % y un 33.37 % de finos, presenta plasticidad, de color beiggs.	DESCRIPCION DEL SUELO	DESCRIPCION DEL SUELO S U (°) C Suelo S friccionante				ENSAYO DE PENETRACION DINAMICA LIGERA Z Ndnl 0000 1000 2000 3000 4000 5000							
			Triccionante		Nd _{pl}	0.00							
				0.10	3.00	4							
				0.20	3.00	4 1							
				0.30	21.00	4 1							
0.50	Arenas Limosas, con arena en un		32.89	0.40	23.00	4 /							
-0.50		SM	32.89	0.50	14.00	0.50							
		SIVI		0.60	19.00	4 >							
				0.70	14.00	4 (
	beiggs.			0.80	16.00	4)							
				0.90	15.00	4 /							
-1.00			31.12	1.00	13.00	1.00							
				1.10	11.00	4							
				1.20	14.00	4							
				1.30	14.00	<u>.</u> 							
				1.40	11.00	<u>.</u> (
-1.50			29.1	1.50	12.00	1.50							
-1.50			1.60	11.00	<u> </u>								
				1.70	12.00	<u> </u>							
				1.80	9.00	1 1							
				1.90	9.00	I 							
-2.00			28.4	2.00	8.00	2.00							
				2.10	7.00	I {							
				2.20	9.00	T \							
				2.30	12.00	T							
				2.40	13.00	† <mark>}</mark>							
-2.50			27.6	2.50	11.00	2.50							
				2.60	8.00	1 <u>{</u>							
				2.70	8.00	1							
				2.80	8.00	†							
		sc		2.90	8.00	†							
-3.00			29.8	3.00	10.00	3.00							
	beiggs.			3.10	11.00	†							
				3.20	11.00	†							
				3.30	11.00	†							
				3.40	15.00	†							
-3.50			35.5	3.50	16.00	3.50							
0.00			55.5	3.60	15.00	† <u> </u>							
				3.70	24.00	† \							
			 	3.80	۷٦.00	†							
				3.90		4							
I													

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 50 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: Calicata: Fecha: Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	s U C s	Φ (°) suelo friccionante	ENSAYO DE PENET	RACION DINAMICA LIGERA
-0.50	Conformado por arena mal graduada, donde predominan en gran cantidad las arenas con un 84.04%, medianamente compactado de color pardo.	SP	32.32 33.44	0.10 8.00 0.20 8.00 0.30 10.00 0.40 10.00 0.50 9.00 0.60 11.00 0.70 15.00 0.80 19.00 0.90 18.00 1.00 22.00 1.10 17.00 1.20 17.00 1.30 17.00 1.40 16.00	1.00
-1.50			34.5	1.50 17.00 1.60 21.00 1.70 21.00 1.80 17.00 1.90 17.00	1.50
-2.00			32.3	2.00 13.00 2.10 12.00 2.20 15.00 2.30 18.00 2.40 21.00	2.00
-2.50	Arenas arcillosas, con arena en un 53.40 % y un 38.15 % de finos, presenta plasticidad, de color	sc	35.5	2.50 23.00 2.60 24.00 2.70 24.00 2.80 16.00 2.90 19.00	2.50
-3.00	beiggs.		35.5	3.00 20.00 3.10 17.00 3.20 21.00 3.30 25.00 3.40 26.00 3.50 25.00	3.50
-5.50			33.3	3.60 15.00 3.70 24.00 3.80 3.90 4.00	4.00

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 50 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: Fecha: Set-24

Se paró el ensayo al contacto con una piedra, 54 golpes para 8 cm (salta el martillo)

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	s u c	Φ (°) suelo			RACION DINAMICA LIGERA
		S	friccionante	Z	Nd_{pl}	0.00 10.00 20.00 30.00 40.00 50.00
				0.10	10.00	
				0.20	13.00]
				0.30	12.00] /
				0.40	8.00] 1
-0.50			26.83	0.50	7.00	0.50
				0.60	7.00]
	Arenas arcillosas, de granulometria fina,			0.70	8.00	<u> </u>
	presenta plasticidad, y tiene un porcentaje			0.80	7.00	.
	considerable de finos.			0.90	6.00	<u> </u>
-1.00		sc	25.95	1.00	6.00	1.00
				1.10	5.00	4 (
				1.20	6.00	4 1
				1.30	8.00	4 1
				1.40	10.00	4 1
-1.50			32.3	1.50	9.00	1.50
	-1.50			1.60	14.00	4
				1.70	15.00	4 1
				1.80	18.00	4 1
0.00			0.4.5	1.90	22.00	2.00
-2.00			34.5	2.00	15.00	2.00
				2.10	21.00	4 //
				2.20	19.00 17.00	. <u>/</u>
	A reason and llanes, do average and the firm			2.40	12.00	1 /
-2.50	Arenas arcillosas, de granulometria fina, presenta plasticidad, y tiene un porcentaje	sc	29.1	2.50	15.00	2.50
2.00	considerable de finos.		23.1	2.60	14.00	1
				2.70	11.00	1 /
				2.80	7.00	1 <u>/</u>
				2.90	7.00	1
-3.00			26.8	3.00	5.00	3.00
				3.10	7.00	1 }
				3.20	6.00	1 {
				3.30	9.00	1
				3.40	8.00	1 4
-3.50			37.8	3.50	28.00	3.50
				3.60	25.00	1 (
				3.70	27.00	1 }
				3.80	26.00	1 <i>!</i>
				3.90		1
Î				4.00		4.00

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata:

Se paró el ensayo al contacto con una piedra, 55 golpes para 8 cm (salta el martillo)

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Ф (°) suelo	ENSAYO DE PENETRACION DINAMICA LIGE							.RA
(,		S	friccionante	Z	Nd _{pl}	0.00	0 10.0	0 20.00	30.00	40.00	50.0
				0.10	10.00	1					
				0.20	11.00	1	}				
				0.30	12.00	1	ľ)			
				0.40	8.00	1	$ \langle$				
-0.50			29.83	0.50	9.00	0.50		-	+	+	4
	Arenas arcillosas, de granulometria fina,			0.60	10.00	1	}				
	presenta plasticidad, arenas 32.62 % y tiene			0.70	11.00		1				
	un porcentaje considerable de finos de	sc		0.80	12.00			ŧ			
	62.24%			0.90	14.00)			
-1.00			29.14	1.00	12.00	1.00		\leftarrow	+	+	4
1.00			20.17	1.10	11.00	†	4				
				1.20	10.00	1	ļ				
				1.30	9.00	†	1				
				1.40	8.00	1	- {				
-1.50			29.8	1.50	9.00	1.50			+	\perp	4
		23.0	1.60	10.00	1	1					
				1.70	11.00	1	1				
				1.80	12.00	1		,			
			1.90	10.00	1	- ∤					
-2.00			31.1	2.00	12.00	2.00	\	—	\perp	\perp	4
2.00			01.1	2.10	14.00	1		\			
				2.20	15.00	1		,			
				2.30	12.00	ł		/			
				2.40	11.00	1	4				
-2.50			30.5	2.50	14.00	2.50			_	\perp	
-2.50			30.3	2.60	12.00	1		<i>[</i>			
	Arenas Limosas, con arena en un			2.70	13.00	1		\			
	45.16 % y			2.80	13.00	1]			
	un 52.07 % de finos, sin	SM		2.90	8.00	1	_/	'			
-3.00	plasticidad de color	OW	29.8	3.00	7.00	3.00	\perp			_	
-3.00	beiggs.		29.0	3.10	9.00	1	1				
				3.10	11.00	1	/	,			
				3.30	15.00	1					
				3.40	12.00	1		/			
-3 50			34.5	3.50	17.00	3.50		\perp	\perp	\perp	_
-3.50		34.5	3.60	17.00	1						
				3.70	18.00	1		1			
			3.70	22.00	1		/				
					22.00	1					
				3.90		4.00				\perp	
				4.00		4.00					

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

2022

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas:Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger JuanCalicata:11Fecha:Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	s U C s	Φ (°) suelo friccionante	ENS		RACION DINAMICA LIGERA
		<u> </u>	modionante		Nd _{pl}	0.00
				0.10	11.00	4 1
				0.20	32.00	.
				0.30	22.00	4
0.50			04.40	0.40	20.00	4 /
-0.50			31.12	0.50	12.00	0.50
				0.60	16.00	4 >
	Arenas Limosas, con arena en un			0.70	10.00	4
	55.29 % y			0.80	13.00	
	un 41.49 % de finos, sin plasticidad			0.90	8.00	1 1 1
-1.00	de color	SM	25.95	1.00	9.00	1.00
	beiggs.			1.10	6.00	. (
				1.20	8.00	.)
				1.30	6.00	. f
-1.50			1.40	6.00	1 1	
		31.7	1.50	14.00	1.50	
			1.60	15.00	1	
			1.70	14.00	1	
			1.80	14.00	.	
				1.90	15.00	<u> </u>
-2.00			31.1	2.00	10.00	2.00
				2.10	15.00	1
				2.20	14.00	<u> </u>
				2.30	12.00	<u> </u>
				2.40	13.00]
-2.50			29.1	2.50	12.00	2.50
	Arenas Limosas, con arena en un			2.60	11.00] /
	65.16 % y un 30.88 % de finos, sin plasticidad			2.70	9.00] {
	de color			2.80	10.00] }
	beiggs.			2.90	9.00] {
-3.00	2-199-1	SM	30.5	3.00	10.00	3.00
				3.10	8.00	1 4
				3.20	14.00	1
				3.30	15.00	1
				3.40	15.00	1
-3.50			33.4	3.50	17.00	3.50
				3.60	17.00	1
			3.70	18.00	1 1	
		1		3.80		1
				3.90		1
		1	I	4.00		4.00

Se paró el ensayo al contacto con una piedra, 56 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Fecha: Calicata: 12 Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Φ (°) suelo	ENS	AYO DE PENET	NETRACION DINAMICA LIGERA							
		s	friccionante	Z	Nd_{pl}	0.00	00 10.0	0 20.00	30.00 40.00	50.00			
				0.10	11.00	1							
				0.20	12.00	I		\					
				0.30	15.00	I		}					
				0.40	14.00	I		 					
-0.50			31.12	0.50	13.00	0.50			+ +	_			
				0.60	12.00	1		{					
	A 1			0.70	14.00	1		}					
	Arenas Limosas, con arena en un			0.80	14.00			+					
	51.49 % y un 45 % de finos, sin plasticidad			0.90	15.00			}					
-1.00	de color	SM	31.73	1.00	14.00	1.00 -		+	+ +	-			
	beiggs.			1.10	13.00	I		{					
	95			1.20	14.00			 					
				1.30	15.00			}					
				1.40	14.00			 					
-1.50			32.3	1.50	13.00	1.50							
				1.60	15.00			}					
				1.70	14.00	I		{					
				1.80	16.00			}					
				1.90	15.00	I		<i>†</i>					
-2.00			30.5	2.00	14.00	2.00		+		-			
				2.10	12.00	I		{					
				2.20	13.00	I		}					
				2.30	12.00			{					
				2.40	14.00			}					
-2.50			29.8	2.50	13.00	2.50				-			
	Arenas Limosas, con arena en un			2.60	12.00	I	,	/					
	50.39% y un 46.37 % de finos, sin			2.70	10.00	l	{						
	plasticidad de color			2.80	12.00	I							
	beiggs.	SM		2.90	11.00	1	/						
-3.00	55-		31.7	3.00	10.00	3.00 -			+	-			
				3.10	15.00	ļ		7					
				3.20	14.00	1		†					
				3.30	13.00	1		†					
				3.40	15.00	1		1					
-3.50			33.4	3.50	15.00	3.50		+	+				
				3.60	17.00	l		1					
			3.70	18.00	I		7						
				3.80		I							
				3.90		I							
				4.00		4.00	<u> </u>						

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 55 golpes para 10 cm (salta el martillo)

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: Fecha:

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	s U C	Φ (°) suelo	ENS	SAYO DE PENET	[RACIO	N DINA	MICA L	IGE	RA
. ,		s	friccionante	Z	Nd _{pl}	0.00	10.00 20.	00 30.00	40.00	50.00
				0.10	4.00	1	,			
				0.20	4.00	1	↓			
				0.30	5.00	1	\			
				0.40	5.00	1	,			
-0.50			25.95	0.50	4.00	0.50			_	-
				0.60	5.00	1	\			
				0.70	6.00	1	†			
	Arenas Limosas, con arena en un			0.80	7.00	1	 			
	51.6 % y	SM		0.90	8.00	1	\			
-1.00	un 48.4 % de finos, sin plasticidad		32.32	1.00	8.00	1.00			_	\dashv
	de color beiggs.			1.10	10.00	1	\			
	beiggs.			1.20	15.00	1				
				1.30	20.00	1				
				1.40	25.00	1				
-1.50			41.1	1.50	35.00	1.50		_	+	4
				1.60	35.00	1			ļ	
				1.70	34.00	1				
				1.80	33.00	1		[
				1.90	36.00	1		'	\	
-2.00			39.5	2.00	36.00	2.00			Д.	4
				2.10	26.00	1				
				2.20	24.00	1		4		
				2.30	40.00	1			>	
				2.40	24.00	1				
-2.50			29.8	2.50	11.00	2.50			_	_
				2.60	14.00	1	}			
	Arenas Limosas, con arena en un			2.70	11.00	1	/ /			
	60.34 % y			2.80	10.00	1	ļ			
	un 36.10 % de finos, sin plasticidad	SM		2.90	8.00	1	- {			
-3.00	de color		31.1	3.00	11.00	3.00	\rightarrow			4
	beiggs.			3.10	10.00	1				
				3.20	14.00	1				
				3.30	15.00	1				
				3.40	15.00	1				
-3.50			36.0	3.50	17.00	3.50			\perp	4
5.50			55.5	3.60	25.00	1		\setminus		
				3.70	18.00	1		/		
				3.80	23.00	1		\		
				3.90	20.00	1				
				4.00		4.00				
OBSERVACIONE				4.00		<u> </u>				

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 52 golpes para 8 cm (salta el martillo)

FACULTAD DE INGENIERIA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas:Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger JuanCalicata:14Fecha:Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C	Ф (°) suelo	ENS	AYO DE PENET	RACIO	ON DINAMICA LIGERA
		s	friccionante	Z	Nd _{pl}	0.00	10.00 20.00 30.00 40.00 50.00
				0.10	10.00	1	
				0.20	9.00		<u> </u>
				0.30	8.00		\
	Arenas Limosas, con arena en un			0.40	11.00	0.50	/
-0.50	51.6 % y		29.14	0.50	8.00	0.50	
	un 48.4 % de finos, sin plasticidad	SM		0.60	9.00		
	de color			0.70	10.00		
	beiggs.			0.80	11.00		\
				0.90	14.00	1.00	
-1.00			31.73	1.00	12.00	1.00	
				1.10	11.00		
				1.20	15.00		
	Conformado por arena mal graduada,			1.30	18.00		
4.50	donde predominan en gran cantidad las	20	00.4	1.40	25.00	1.50	
-1.50	arenas en un 98.02% y solo un1.98 % de	SP	39.1	1.50	22.00	1.50	
	finos, medianamente compactado de color pardo.			1.60	29.00		
	pardo.			1.70	35.00		
				1.80	25.00		
0.00			04.0	1.90	22.00	2.00	
-2.00			34.0	2.00	24.00	2.00	
				2.10	21.00		
				2.20	16.00		
				2.30	18.00		
0.50	Arenas Limosas, con arena en un		00.4	2.40	13.00	2.50	
-2.50	57.01 % y		28.4	2.50	11.00	2.50	
	un 39.13% de finos, sin plasticidad			2.60	8.00		
	de color			2.70	9.00		\
	beiggs.	CM.		2.80	11.00		
2.00		SM	20.5	2.90	12.00	3.00	
-3.00			30.5	3.00	16.00		
				3.10	14.00		
				3.20	11.00		
				3.30	12.00 12.00		
-3.50			36.4		15.00	3.50	
-3.30			30.4	3.50	27.00	3.50	
				3.60			
				3.70	17.00		
				3.80	25.00	1	
				3.90		4.00	
				4.00		4.00	

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 51 golpes para 10 cm (salta el martillo)

FACULTAD DE INGENIERIA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE PENETRACIÓN DINÁMICA LIGERA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto:

2022"

Localización Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: Calicata: Fecha: 15 Set-24

PROFUNDIDAD (m)	DESCRIPCION DEL SUELO	S U C S	Φ (°) suelo friccionante	ENSAYO DE PENET	RACION DINAMICA LIGERA
-0.50	Arenas Limosas, con arena en un 57.37 % y un 38.76 % de finos, sin plasticidad de color beiggs.	SM	27.65 33.44	0.10 9.00 0.20 8.00 0.30 10.00 0.40 11.00 0.50 12.00 0.60 8.00 0.70 9.00 0.80 8.00 0.90 9.00 1.00 14.00 1.10 18.00 1.20 15.00	1.00
-1.50	Conformado por arena mal graduada, donde predominan en gran cantidad las arenas en un 98.16 % y solo un 1.84 % de finos, medianamente compactado de color pardo.	SP	36.4	1.30 20.00 1.40 22.00 1.50 34.00 1.60 25.00 1.70 21.00 1.80 25.00 1.90 22.00 2.00 15.00	150
-3.50	Arenas Limosas, con arena en un 56.15 % y un 41.54 % de finos, sin plasticidad de color beiggs.	SM	29.1 32.3 35.5	2.10 17.00 2.20 12.00 2.30 13.00 2.40 11.00 2.50 8.00 2.60 10.00 2.70 9.00 2.80 13.00 2.90 12.00 3.00 15.00 3.10 13.00 3.20 16.00 3.30 18.00 3.40 15.00 3.50 17.00 3.60 15.00 3.70 24.00	3.50
				3.80 3.90 4.00	400

OBSERVACIONES

Se paró el ensayo al contacto con una piedra, 50 golpes para 8 cm (salta el martillo)

ANEXO 2 ENSAYOS DE LABORATORIO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

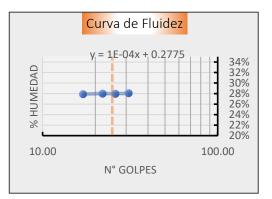
Muestra: Calicata N° 1 Estrato 1 Profundidad: 0 m - 1.4 m

Fecha: Setiembre del 2024 Coordenadas: 763394 E - 9006167 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	228.00
Peso final de la muestra (g)	227.90

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.500	99.78%
N°10	2.000	1.700	99.03%
N°20	0.840	2.000	98.16%
N°40	0.425	4.100	96.36%
N°60	0.250	31.700	82.45%
N°100	0.149	87.000	44.27%
N°200	0.074	46.600	23.83%
> N°200		54.300	0.00%


2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)						
PARAMETRO	Tara N°					
PARAIVIETRO	1	2	3	4		
1. Numero de golpes	17.000	22.000	26.000	31.000		
2. Peso de la tara (gr)	27.400	27.000	28.400	21.750		
3. Peso tara + Suelo humedo (gr)	32.900	35.000	37.100	32.700		
4. Peso tara + Suelo seco (gr)	31.700	33.250	35.200	30.300		
5. Peso agua (gr)	1.200	1.750	1.900	2.400		
6. Peso Suelo seco (gr)	4.300	6.250	6.800	8.550		
7. Contenido Humedad (%)	27.91%	28.00%	27.94%	28.07%		

B. LIMITE PLASTICO (MTC E 111)						
PARAMETRO		Tara N°				
PARAIVIETRO	1	2	3			
1. Peso de la tara (gr)	28.900	27.300	27.600			
2. Peso tara + Suelo humedo (gr)	33.900	32.200	32.700	22%		
3. Peso tara + Suelo seco (gr)	33.000	31.300	31.800	22%		
4. Peso agua (gr)	0.900	0.900	0.900			
5. Peso Suelo seco (gr)	4.100	4.000	4.200			
6. Contenido Humedad (%)	21.95%	22.50%	21.43%			

3. CONTENIDO DE HUMEDAD (E 108)

PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	27.822	29.364	29.069	
2. Peso tara + Suelo humedo (gr)	82.763	95.238	99.720	0.020/
3. Peso tara + Suelo seco (gr)	78.471	89.414	93.928	9.03%

Grava %	0.22%
Arena %	75.95%
Finos %	23.83%
Limite Líquido	28%
Limite Plástico	22%
Índice de Plasticidad	6
Contenido Humedad	9.03%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Índice de Grupo	0.00

4. Peso agua (gr)5. Peso Suelo seco (gr)6. Contenido Humedad (%)

4.292	5.824	5.792
50.649	60.050	64.859
8.47%	9.70%	8.93%

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto:

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash
2022"

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash

 Muestra:
 Calicata N°
 1
 Estrato
 1
 Profundidad:
 0 m - 1.4 m

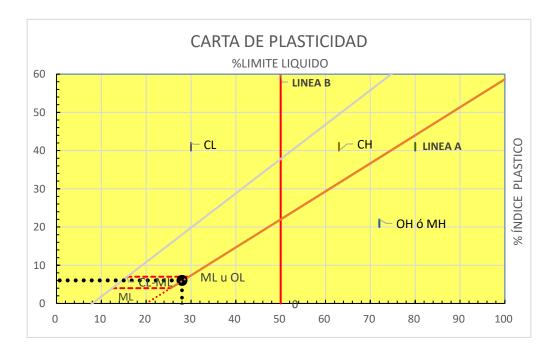
 Fecha:
 Setiembre del 2024
 Coordenadas:
 763394 E - 9006167 N

1. Porcentaje que pasa la malla N°200: 23.83%

2. Porcentaje que pasa la malla N°4: 99.78%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 1 Estrato 1 Profundidad: 0 m - 1.4 m

Fecha: Setiembre del 2024 Coordenadas: 763394 E - 9006167 N

1. Porcentaje que pasa la malla N°200: 23.83%

%FINOS<=35%

MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 98.16%

3. Porcentaje que pasa la malla N°10: 99.03%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

LL: 27.99% IP: 6

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES					
GRUPO	TIPOLOGÍA	CALIDAD			
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O			
A-2-4	LIMOSA	BUENO			

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

Calicata N° 1 Estrato 1.40 m - 3.50 m Muestra: Profundidad: Setiembre del 2024 763394 E - 9006167 N Coordenadas:

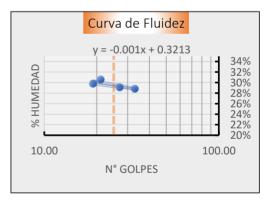
Fecha:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	389.00
Peso final de la muestra (g)	388.43

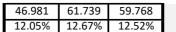
Proyecto:

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.870	99.78%
N°10	2.000	1.960	99.27%
N°20	0.840	5.600	97.83%
N°40	0.425	12.300	94.66%
N°60	0.250	53.600	80.86%
N°100	0.149	187.900	32.49%
N°200	0.074	69.400	14.62%
> N°200		56.800	0.00%


2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)						
DADAMETRO		Та	ıra N°			
PARAMETRO	1	2	3	4		
1. Numero de golpes	21.000	19.000	27.000	33.000		
2. Peso de la tara (gr)	28.300	27.500	27.000	27.100		
3. Peso tara + Suelo humedo (gr)	33.850	34.250	33.650	33.800		
4. Peso tara + Suelo seco (gr)	32.550	32.700	32.150	32.300		
5. Peso agua (gr)	1.300	1.550	1.500	1.500		
6. Peso Suelo seco (gr)	4.250	5.200	5.150	5.200		
7. Contenido Humedad (%)	30.59%	29.81%	29.13%	28.85%		

B. LIMITE PLASTICO (MTC E 111)						
DADAMETRO	Tara N°					
PARAMETRO	1	2	3			
1. Peso de la tara (gr)	28.900	27.300	27.600			
2. Peso tara + Suelo humedo (gr)	33.900	32.200	32.700	22%		
3. Peso tara + Suelo seco (gr)	33.000	31.300	31.800	22%		
4. Peso agua (gr)	0.900	0.900	0.900			
5. Peso Suelo seco (gr)	4.100	4.000	4.200			
6. Contenido Humedad (%)	21.95%	22.50%	21.43%			


3. CONTENIDO DE HUMEDAD (E 108)

DADAMETROS				
PARAMETROS	1	2	3	
1. Peso de la tara (gr)	27.989	27.740	28.962	
2. Peso tara + Suelo humedo (gr)	80.630	97.300	96.210	12.41%
3. Peso tara + Suelo seco (gr)	74.970	89.479	88.730	12.41%
4. Peso agua (gr)	5.660	7.821	7.480	

Grava %	0.22%
Arena %	85.15%
Finos %	14.62%
Limite Líquido	30%
Limite Plástico	22%
Índice de Plasticidad	8
Contenido Humedad	12.41%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

'Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash Proyecto: Localización:

Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

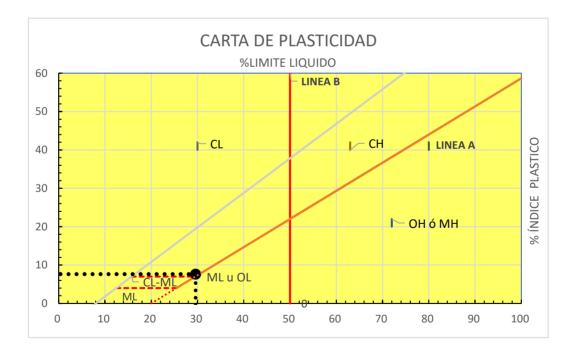
Calicata N° Muestra: **Estrato** Profundidad: 1.40 m - 3.50 m

Fecha: Setiembre del 2024 Coordenadas: 763394 E - 9006167 N

1. Porcentaje que pasa la malla N°200: 14.62%

2. Porcentaje que pasa la malla N°4: 99.78%

%FINOS<50% **SUELO DE PARTICULAS GRUESAS** %ARENA>50% ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP CC: NP

LL: 29.59% IP: 8

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE	SUELOS POR E	EL METO	OO AASHTO	
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urbana	del distrito de Sant	a, Provincia de Santa, De	partamento de Ancash
Localización:	Cambio Puente - Tambo Real Viejo, di	strito Chimbote, Provincia Santa	a, Ancash.		
Muestra:	Calicata N° 1 Estrato	2	Pr	ofundidad:	1.40 m - 3.50 m
Fecha:	Setiembre del 2024		Co	ordenadas:	763394 E - 9006167 N
4 Damanta	-! I II- N/200	14.620/	1	0/51110	250/
1. Porcenta	aje que pasa la malla N°200:	14.62%		MATERIALES (SCANIII ADES
2 Porcent	aje que pasa la malla N°40:	97.83%	1	IVIATERIALES	TRAINULARES
2. Forcent	aje que pasa la mana iv 40.	37.8370			
3. Porcent	aje que pasa la malla N°10:	99.27%	1		
			1		
CF	RITERIO GRANULOMETRÍA		CRITER	IO LIMITES ATTE	RBEG
					i
	CU: NP		LL:	29.59%	
		1		-	İ
	CC: NP		IP:	8	
		ÍNDICE DE GRUPO			
		0			
		0			

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES				
GRUPO	TIPOLOGÍA	CALIDAD		
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O		
A-2-4	LIMOSA	BUENO		

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

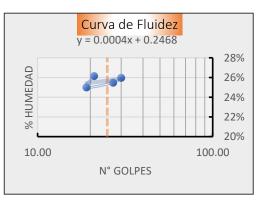
Muestra: Calicata N° 2 Estrato 1 Profundidad: 0 m - 1.20 m

Fecha: Setiembre del 2024 Coordenadas: 763251 E - 9005988 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	439.00
Peso final de la muestra (g)	438.05

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	15.400	96.48%
N°10	2.000	7.800	94.70%
N°20	0.840	5.900	93.36%
N°40	0.425	6.800	91.80%
N°60	0.250	36.700	83.43%
N°100	0.149	229.800	30.97%
N°200	0.074	32.450	23.56%
> N°200		103.200	0.00%


2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)					
PARAMETRO	Tara N°				
	1	2	3	4	
1. Numero de golpes	21.000	19.000	27.000	30.000	
2. Peso de la tara (gr)	28.300	27.500	27.000	27.200	
3. Peso tara + Suelo humedo (gr)	33.850	34.250	33.650	33.750	
4. Peso tara + Suelo seco (gr)	32.700	32.900	32.300	32.400	
5. Peso agua (gr)	1.150	1.350	1.350	1.350	
6. Peso Suelo seco (gr)	4.400	5.400	5.300	5.200	
7. Contenido Humedad (%)	26.14%	25.00%	25.47%	25.96%	

B. LIMITE PLASTICO (MTC E 111)					
DARAMETRO	Tara N°				
PARAMETRO	1	2	3		
1. Peso de la tara (gr)	21.930	22.610	27.300		
2. Peso tara + Suelo humedo (gr)	24.010	26.700	31.500	18%	
3. Peso tara + Suelo seco (gr)	23.710	26.100	30.800	10%	
4. Peso agua (gr)	0.300	0.600	0.700		
5. Peso Suelo seco (gr)	1.780	3.490	3.500		
6. Contenido Humedad (%)	16.85%	17.19%	20.00%		

3. CONTENIDO DE HUMEDAD (E 108)

PARAMETROS				
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.918	29.991	29.978	
2. Peso tara + Suelo humedo (gr)	85.715	90.437	94.221	0.400/
3. Peso tara + Suelo seco (gr)	81.294	85.639	89.236	8.49%

Grava %	3.52%
Arena %	72.93%
Finos %	23.56%
Limite Líquido	26%
Limite Plástico	18%
Índice de Plasticidad	8
Contenido Humedad	8.49%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

4. Peso agua (gr)5. Peso Suelo seco (gr)6. Contenido Humedad (%)

4.421	4.798	4.985	
52.376	55.648	59.258	
8.44%	8.62%	8.41%	

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

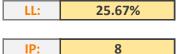
Muestra: Calicata N° 2 Estrato 1 Profundidad: 0 m - 1.20 m

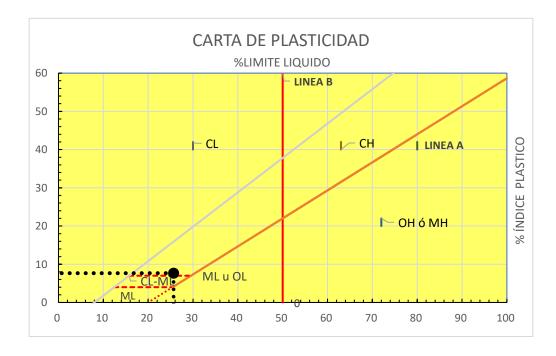
Fecha: Setiembre del 2024 Coordenadas: 763251 E - 9005988 N

1. Porcentaje que pasa la malla N°200: 23.56%

2. Porcentaje que pasa la malla N°4: 96.48%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancasi

Proyecto:

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° Estrato Profundidad: 0 m - 1.20 m Fecha: Setiembre del 2024 Coordenadas: 763251 E - 9005988 N

1. Porcentaje que pasa la malla N°200: 23.56%

%FINOS<=35% **MATERIALES GRANULARES**

93.36% 2. Porcentaje que pasa la malla N°40:

94.70% 3. Porcentaje que pasa la malla N°10:

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP NP CC:

LL:	25.07%	
IP:	8	

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA	CALIDAD	
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O	
	LIMOSA	BUENO	

A-2-4(0) En conclusión es un suelo:

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

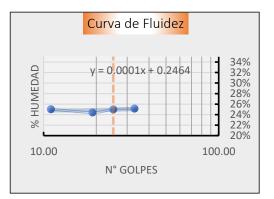
Muestra: Calicata N° 5 Estrato 1 Profundidad: 0 m - 1.20 m

Fecha: Setiembre del 2024 Coordenadas: 762664 E - 9005740 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

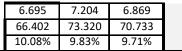
Peso total de la muestra (g)	228.00
Peso final de la muestra (g)	226.60

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.500	99.78%
N°10	2.000	1.700	99.03%
N°20	0.840	2.000	98.15%
N°40	0.425	4.100	96.34%
N°60	0.250	16.500	89.06%
N°100	0.149	102.200	43.95%
N°200	0.074	46.600	23.39%
> N°200		53.000	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)				
PARAMETRO	Tara N°			
PARAIVIETRO	1	3	4	
1. Numero de golpes	11.000	19.000	25.000	33.000
2. Peso de la tara (gr)	21.910	22.600	21.750	21.750
3. Peso tara + Suelo humedo (gr)	34.150	33.300	32.500	32.700
4. Peso tara + Suelo seco (gr)	31.700	31.200	30.350	30.500
5. Peso agua (gr)	2.450	2.100	2.150	2.200
6. Peso Suelo seco (gr)	9.790	8.600	8.600	8.750
7. Contenido Humedad (%)	25.03%	24.42%	25.00%	25.14%


B. LIMITE PLASTICO (MTC E 111)					
PARAMETRO		Tara N°			
PARAIVIETRO	1	2	3		
1. Peso de la tara (gr)	21.930	22.610	27.300		
2. Peso tara + Suelo humedo (gr)	24.100	25.600	31.500	16%	
3. Peso tara + Suelo seco (gr)	23.800	25.200	30.900	10%	
4. Peso agua (gr)	0.300	0.400	0.600		
5. Peso Suelo seco (gr)	1.870	2.590	3.600		
6. Contenido Humedad (%)	16.04%	15.44%	16.67%		

PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	29.651	27.448	28.709	
2. Peso tara + Suelo humedo (gr)	102.748	107.972	106.311	0.070/
3. Peso tara + Suelo seco (gr)	96.053	100.768	99.442	9.87%

Grava %	0.22%
Arena %	76.39%
Finos %	23.39%
Limite Líquido	25%
Limite Plástico	16%
Índice de Plasticidad	9
Contenido Humedad	9.87%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 5 Estrato 1 Profundidad: 0 m - 1.20 m

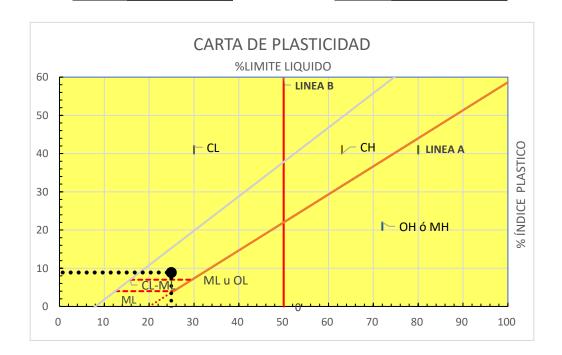
Fecha: Setiembre del 2024 Coordenadas: 762664 E - 9005740 N

1. Porcentaje que pasa la malla N°200: 23.39%

2. Porcentaje que pasa la malla N°4: 99.78%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

LL: 24.93%

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 5 Estrato 1 Profundidad: 0 m - 1.20 m

Fecha: Setiembre del 2024 Coordenadas: 762664 E - 9005740 N

1. Porcentaje que pasa la malla N°200: 23.39%

%FINOS<=35%
MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 98.15%

3. Porcentaje que pasa la malla N°10: 99.03%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

LL: 24.93% IP: 9

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES				
GRUPO	TIPOLOGÍA	CALIDAD		
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O		
A-2-4	LIMOSA	BUENO		

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

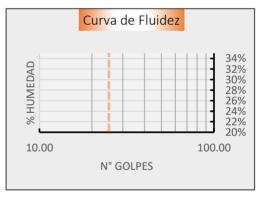
Calicata N° 2 Estrato 1.20 m - 3.50 m Muestra: Profundidad: Setiembre del 2024 763251 E - 9005988 N Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	234.00
Peso final de la muestra (g)	231.80

Proyecto:

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	13.500	94.18%
N°10	2.000	6.300	91.46%
N°20	0.840	4.500	89.52%
N°40	0.425	5.600	87.10%
N°60	0.250	52.200	64.58%
N°100	0.149	116.300	14.41%
N°200	0.074	23.400	4.31%
> N°200		10.000	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)				
DADAMETRO	Tara N°			
PARAMETRO	1	2	3	4
1. Numero de golpes				
2. Peso de la tara (gr)				
3. Peso tara + Suelo humedo (gr)				
4. Peso tara + Suelo seco (gr)				
5. Peso agua (gr)				
6. Peso Suelo seco (gr)				
7. Contenido Humedad (%)				

B. LIMITE PLASTICO (MTC E 111)					
DADAMETRO		Tara N°			
PARAMETRO	1	1 2 3			
1. Peso de la tara (gr)					
2. Peso tara + Suelo humedo (gr)					
3. Peso tara + Suelo seco (gr)					
4. Peso agua (gr)					
5. Peso Suelo seco (gr)					
6. Contenido Humedad (%)					

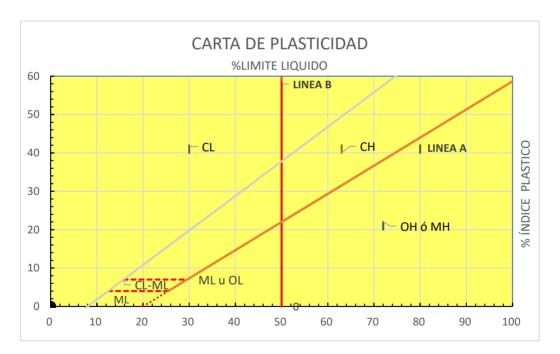
PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.552	28.590	28.018	
2. Peso tara + Suelo humedo (gr)	104.122	97.293	94.192	12 250/
3. Peso tara + Suelo seco (gr)	95.186	89.163	86.622	13.25%
4. Peso agua (gr)	8.936	8.130	7.570	

Grava %	5.82%
Arena %	89.86%
Finos %	4.31%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	13.25%
Clasificacion SUCS	SP
Clasificacion AAHSTO	A3(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS Proyecto: 2022" Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash. Calicata N° Muestra: Estrato Profundidad: 1.20 m - 3.50 m Fecha: Setiembre del 2024 Coordenadas: 763251 E - 9005988 N 1. Porcentaje que pasa la malla N°200: 4.31% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 94.18% %ARENA>50% ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS<5%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU:	1.94
CC·	1 27

En conclusión es un suelo:

SP

ARENA MAL GRADUADO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION I	DE SUELOS POR E	L METODO AASH	ГО
Proyecto:	"Zonificación geotécnica con fines o 2022"	de cimentación en la zona urbana de	distrito de Santa, Provincia de Sant	a, Departamento de Ancash -
Localización:		o, distrito Chimbote, Provincia Santa	, Ancash.	
Muestra:	Calicata N° 2 Estrat	o 2	Profundidad:	1.20 m - 3.50 m
Fecha:	Setiembre del 2024		Coordenadas:	763251 E - 9005988 N
		4.240/	0/5	250/
1. Porcenta	aje que pasa la malla N°200:	4.31%		FINOS<=35%
2 0		00.530/	MATERIA	LES GRANULARES
2. Porcent	aje que pasa la malla N°40:	89.52%		
3. Porcent	aje que pasa la malla N°10:	91.46%		
	7 - 1 - 1	0211071		
C	RITERIO GRANULOMETRÍA		CRITERIO LIMITES A	ATTERBEG
		_		
	CU: 1.94		LL: NP	
	CC: 1.27		IP: NP	
		<u> </u>		
		ÍNDICE DE GRUPO		
		()		

CARACTERISTICAS SEGÚN CUADRO AASHTO

	MATERIALES GRANULARES	
GRUPO	TIPOLOGÍA	CALIDAD
А3	ARENA MAL GRADUADA	

En conclusión es un suelo: A3(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

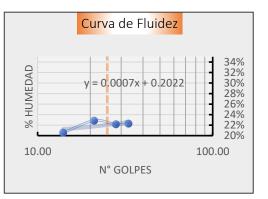
Muestra: Calicata N° 4 Estrato 1 Profundidad: 0 m - 1.50 m

Fecha: Setiembre del 2024 Coordenadas: 762875 E - 9005654 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	373.00
Peso final de la muestra (g)	372.60

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	23.400	93.72%
N°10	2.000	47.300	81.03%
N°20	0.840	27.500	73.64%
N°40	0.425	15.500	69.48%
N°60	0.250	24.500	62.91%
N°100	0.149	71.700	43.67%
N°200	0.074	68.100	25.39%
> N°200		94.600	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)				
PARAMETRO	Tara N°			
PARAIVIETRO	1	2	3	4
1. Numero de golpes	14.000	21.000	28.000	33.000
2. Peso de la tara (gr)	27.500	27.900	26.700	26.800
3. Peso tara + Suelo humedo (gr)	40.400	60.950	71.900	71.800
4. Peso tara + Suelo seco (gr)	38.200	54.800	63.700	63.600
5. Peso agua (gr)	2.200	6.150	8.200	8.200
6. Peso Suelo seco (gr)	10.700	26.900	37.000	36.800
7. Contenido Humedad (%)	20.56%	22.86%	22.16%	22.28%

B. LIMITE PLASTICO (MTC E 111)				
DADAMETRO		Tara N°		
PARAMETRO	1	2	3	
1. Peso de la tara (gr)	21.930	22.610	27.300	
2. Peso tara + Suelo humedo (gr)	24.100	26.700	31.500	19%
3. Peso tara + Suelo seco (gr)	23.750	26.100	30.800	15%
4. Peso agua (gr)	0.350	0.600	0.700	
5. Peso Suelo seco (gr)	1.820	3.490	3.500	
6. Contenido Humedad (%)	19.23%	17.19%	20.00%	

PARAMETROS		Tara N°		
PARAMETROS	1	2	3	
1. Peso de la tara (gr)	28.701	27.883	28.010	
2. Peso tara + Suelo humedo (gr)	108.004	110.557	106.693	0.049/
3. Peso tara + Suelo seco (gr)	101.408	103.786	100.105	9.04%

Grava %	6.28%
Arena %	68.33%
Finos %	25.39%
Limite Líquido	22%
Limite Plástico	19%
Índice de Plasticidad	3
Contenido Humedad	9.04%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

6.596	6.771	6.588	
72.707	75.903	72.095	
9.07%	8.92%	9.14%	

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto:

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash
Localización:

Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra:

Calicata N° 4 Estrato 1 Profundidad: 0 m - 1.50 m

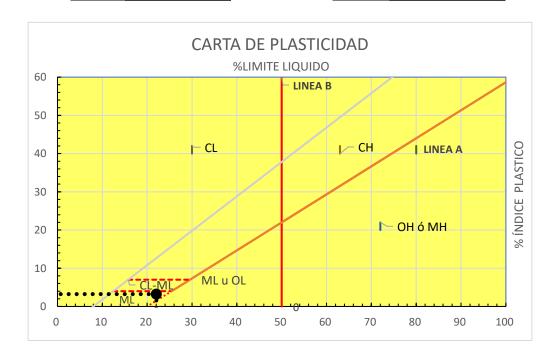
 Muestra:
 Calicata N°
 4
 Estrato
 1
 Profundidad:
 0 m - 1.50 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 762875 E - 9005654 N

1. Porcentaje que pasa la malla N°200: 25.39%

2. Porcentaje que pasa la malla N°4: 93.72%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

LL: 22.04%

En conclusión es un suelo:

SM

ARENA LIMOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 4 Estrato 1 Profundidad: 0 m - 1.50 m

Fecha: Setiembre del 2024 Coordenadas: 762875 E - 9005654 N

1. Porcentaje que pasa la malla N°200: 25.39%

%FINOS<=35%
MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 73.64%

3. Porcentaje que pasa la malla N°10: 81.03%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

LL.	22.04/0	
ID.	2	

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA	CALIDAD	
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O	
A-2-4	LIMOSA	BUENO	

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash - 2022"

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas

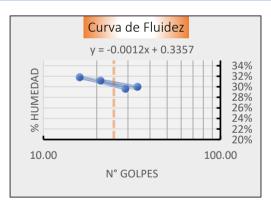
Calicata N° 3 Estrato 0 m - 1.35 m Muestra: Profundidad:

763063 E - 9005823 N Fecha: Setiembre del 2024 Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	245.00
Peso final de la muestra (g)	243.90

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.300	99.88%
N°10	2.000	1.200	99.38%
N°20	0.840	2.900	98.20%
N°40	0.425	15.600	91.80%
N°60	0.250	54.300	69.54%
N°100	0.149	83.000	35.51%
N°200	0.074	7.500	32.43%
> N°200		79.100	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)					
PARAMETRO	Tara N°				
PARAIVIETRO	1	2	3	4	
1. Numero de golpes	16.000	29.000	21.000	34.000	
2. Peso de la tara (gr)	27.800	28.600	26.700	26.900	
3. Peso tara + Suelo humedo (gr)	43.750	42.600	39.950	32.100	
4. Peso tara + Suelo seco (gr)	39.900	39.400	36.800	30.900	
5. Peso agua (gr)	3.850	3.200	3.150	1.200	
6. Peso Suelo seco (gr)	12.100	10.800	10.100	4.000	
7. Contenido Humedad (%)	31.82%	29.63%	31.19%	30.00%	

7. Contenido Humedad (70)	31.02/0	29.03/0	31.1370	30.0070	
B. LIMITE PLASTICO (MTC E 111)					
DADAMETRO	Tara N°				
PARAMETRO	1	2	3		
1. Peso de la tara (gr)	21.930	22.610	27.300		
2. Peso tara + Suelo humedo (gr)	24.010	26.700	31.500	18%	
3. Peso tara + Suelo seco (gr)	23.710	26.100	30.800	10%	
4. Peso agua (gr)	0.300	0.600	0.700		
5. Peso Suelo seco (gr)	1.780	3.490	3.500		
6. Contenido Humedad (%)	16.85%	17.19%	20.00%		

PARAMETROS	Tara N°			
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.534	29.310	29.249	
2. Peso tara + Suelo humedo (gr)	104.122	97.293	94.192	13.39%
3. Peso tara + Suelo seco (gr)	95.186	89.163	86.622	15.59%
4. Peso agua (gr)	8.936	8.130	7.570	
5. Peso Suelo seco (gr)	66.652	59.853	57.373	

Grava %	0.12%
Arena %	67.45%
Finos %	32.43%
Limite Líquido	31%
Limite Plástico	18%
Índice de Plasticidad	13
Contenido Humedad	13.39%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-6
Gravedad Especifica	2.672
Índice de Grupo	0.07

13.41% | 13.58% | 13.19%

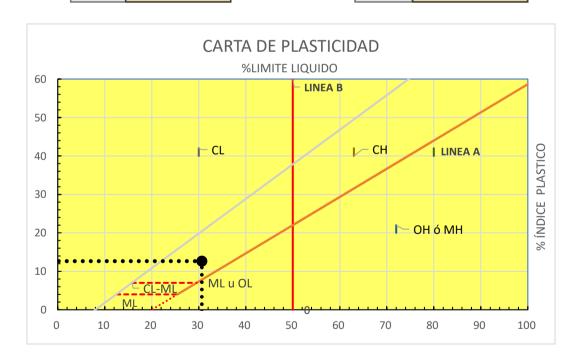
UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto: Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash. Calicata N° Profundidad: 0 m - 1.35 m Muestra: Estrato Coordenadas: Fecha: Setiembre del 2024 763063 E - 9005823 N 1. Porcentaje que pasa la malla N°200: 32.43% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 99.88% %ARENA>50%

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

ARENA

CU:	NP
CC:	NP

LL:	30.66%	
ID.	12	

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

			EL METODO AASHT	
Proyecto:	"Zonificación geotécnica con fines de ci 2022"	imentación en la zona urbana de	el distrito de Santa, Provincia de Santa,	Departamento de Ancash -
Localización:	Cambio Puente - Tambo Real Viejo, dis	strito Chimbote, Provincia Santa,	Ancash.	
Muestra:	Calicata N° 3 Estrato	1	Profundidad:	0 m - 1.35 m
Fecha:	Setiembre del 2024		Coordenadas:	763063 E - 9005823 N
1. Porcent	aje que pasa la malla N°200:	32.43%		NOS<=35%
2 0	h-! I II- NI940.	00.300/	MATERIAL	ES GRANULARES
2. Porcent	taje que pasa la malla N°40:	98.20%	ı	
3 Porcent	taje que pasa la malla N°10:	99.38%	1	
3.1 oreem	taje que pasa la mana le 10.	33.3070		
С	RITERIO GRANULOMETRÍA	1	CRITERIO LIMITES A	TTERBEG
		-		
	CU: NP		LL: 30.66%	
		-		_
	CC: NP		IP: 13	
		ÍNDICE DE GRUPO		
		0		
		0	_	

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA	CALIDAD	
A-2-6	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O	
A-2-0	LIMOSA	BUENO	

En conclusión es un suelo: A-2-6

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

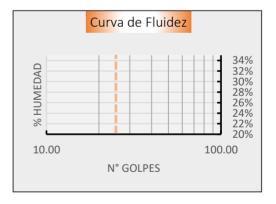
Calicata N° 5 Estrato 1.20 m - 3.40 m Muestra: Profundidad: Setiembre del 2024 762664 E - 9005740 N

Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

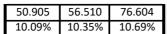
Peso total de la muestra (g)	208.00
Peso final de la muestra (g)	207.40

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.200	99.90%
N°10	2.000	1.900	98.99%
N°20	0.840	3.800	97.16%
N°40	0.425	21.700	86.69%
N°60	0.250	57.100	59.16%
N°100	0.149	89.100	16.20%
N°200	0.074	23.600	4.82%
> N°200		10.000	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)					
DADAMETRO	Tara N°				
PARAMETRO	1	2	3	4	
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)					
4. Peso tara + Suelo seco (gr)					
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					


B. LIMITE PLASTICO (MTC E 111)					
DADAMETRO	Tara N°				
PARAMETRO	1	2	3		
1. Peso de la tara (gr)					
2. Peso tara + Suelo humedo (gr)					
3. Peso tara + Suelo seco (gr)					
4. Peso agua (gr)					
5. Peso Suelo seco (gr)					
6. Contenido Humedad (%)					

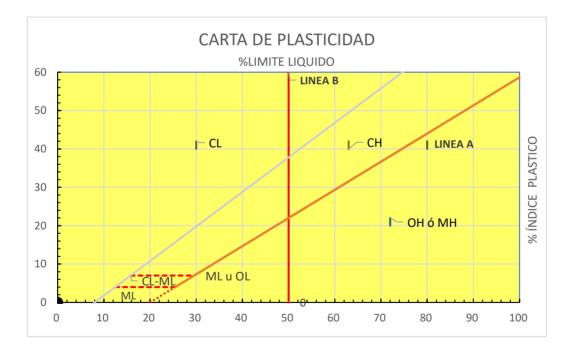
PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	29.953	28.935	28.563	
2. Peso tara + Suelo humedo (gr)	85.994	91.293	113.355	10 200/
3. Peso tara + Suelo seco (gr)	80.858	85.445	105.167	10.38%
4. Peso agua (gr)	5.136	5.848	8.188	

Grava %	0.10%
Arena %	95.08%
Finos %	4.82%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	10.38%
Clasificacion SUCS	SP
Clasificacion AAHSTO	A-3(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS Proyecto: 2022" Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash. Calicata N° Muestra: Estrato Profundidad: 1.20 m - 3.40 m Fecha: Setiembre del 2024 Coordenadas: 762664 E - 9005740 N 1. Porcentaje que pasa la malla N°200: 4.82% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 99.90% 2. Porcentaje que pasa la malla N°4: %ARENA>50% ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS<5%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: 2.15

IP: NP

En conclusión es un suelo:

SP

ARENA MAL GRADUADO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASII	FICACION DI	E SUELOS POR	EL MET	ODO AASHTO	
Proyecto:	"Zonificación 2022"	geotécnica con fines de	cimentación en la zona urbana	del distrito de S	anta, Provincia de Santa, Dep	partamento de Ancash -
Localizació		ite - Tambo Real Viejo, d	distrito Chimbote, Provincia San	nta, Ancash.		
Muestra:	Calicata N°	5 Estrato	2		Profundidad:	1.20 m - 3.40 m
Fecha:	Setiembre de	el 2024			Coordenadas:	762664 E - 9005740 N
				-		
1. Poi	rcentaje que pasa la	malla N°200:	4.82%			S<=35%
				-	MATERIALES (GRANULARES
2. Po	rcentaje que pasa la	a malla N°40:	97.16%			
				-		
3. Po	rcentaje que pasa la	a malla N°10:	98.99%			
	CRITERIO GRAN	JI II ONAETDÍA		CDIT	EDIO LINAITES ATTEI	DDEC
	CRITERIO GRAI	NULUIVIETRIA		CKII	ERIO LIMITES ATTEI	RBEG
	CU:	2.15		LL:	NP	1
						ı
	CC:	1.27		IP:	NP	1
			_			
			ÍNDICE DE GRUPO)		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES				
GRUPO	TIPOLOGÍA	CALIDAD		
A-3	ARENA MAL GRADUADA			

En conclusión es un suelo: A-3(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata N° 3 Estrato 2 Tesistas

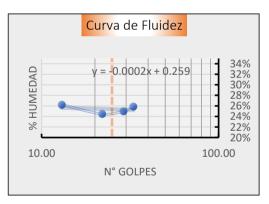
1.35 m - 3.50 m Muestra: Profundidad:

Fecha: Setiembre del 2024 Coordenadas: 763063 E - 9005823 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	334.00
Peso final de la muestra (g)	333.50

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.800	99.76%
N°10	2.000	2.400	99.04%
N°20	0.840	34.800	88.61%
N°40	0.425	36.800	77.57%
N°60	0.250	62.300	58.89%
N°100	0.149	101.500	28.46%
N°200	0.074	7.800	26.12%
> N°200		87.100	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)						
PARAMETRO	Tara N°					
PARAIVIETRO	1	2	3	4		
1. Numero de golpes	13.000	22.000	29.000	33.000		
2. Peso de la tara (gr)	21.910	22.600	21.750	21.750		
3. Peso tara + Suelo humedo (gr)	35.150	34.300	32.500	32.700		
4. Peso tara + Suelo seco (gr)	32.400	32.000	30.350	30.450		
5. Peso agua (gr)	2.750	2.300	2.150	2.250		
6. Peso Suelo seco (gr)	10.490	9.400	8.600	8.700		
7. Contenido Humedad (%)	26.22%	24.47%	25.00%	25.86%		

B. LIMITE PLASTICO (MTC E 111)						
1	2	3				
21.930	22.610	27.300				
24.010	26.700	31.500	18%			
23.710	26.100	30.800	18%			
0.300	0.600	0.700				
1.780	3.490	3.500				
16.85%	17.19%	20.00%				
	1 21.930 24.010 23.710 0.300 1.780	Tara N° 1 2 21.930 22.610 24.010 26.700 23.710 26.100 0.300 0.600 1.780 3.490	Tara N° 1 2 3 21.930 22.610 27.300 24.010 26.700 31.500 23.710 26.100 30.800 0.300 0.600 0.700 1.780 3.490 3.500			

PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.710	28.879	28.136	
2. Peso tara + Suelo humedo (gr)	89.330	109.543	98.524	12 210/
3. Peso tara + Suelo seco (gr)	82.641	100.788	90.782	12.31%
4. Peso agua (gr)	6.689	8.755	7.742	
5. Peso Suelo seco (gr)	53.931	71.909	62.646	

Grava %	0.24%
Arena %	73.64%
Finos %	26.12%
Limite Líquido	25%
Limite Plástico	18%
Índice de Plasticidad	7
Contenido Humedad	12.31%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

Proyecto:

12.40% | 12.18% | 12.36%

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS FOR EL METUDO SUCS
"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -
2022"

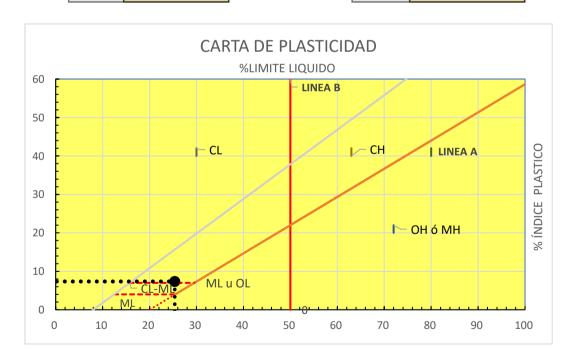
SIEICACION DE SUELOS BOD EL METODO SUCS

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Calicata N° Profundidad: 1.35 m - 3.50 m Muestra: Estrato

Coordenadas: Fecha: Setiembre del 2024 763063 E - 9005823 N

1. Porcentaje que pasa la malla N°200: 26.12% %FINOS<50%


2. Porcentaje que pasa la malla N°4: 99.76% **SUELO DE PARTICULAS GRUESAS** %ARENA>50% **ARENA**

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP CC: NP LL: 25.37% IP: 7

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION D	E SUELOS POR	EL METODO AASHTO	
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urbana	del distrito de Santa, Provincia de Santa, Depa	artamento de Ancash -
Localización:	Cambio Puente - Tambo Real Viejo, o	distrito Chimbote, Provincia Sar	nta, Ancash.	
Muestra:	Calicata N° 3 Estrato	2	Profundidad:	1.35 m - 3.50 m
Fecha:	Setiembre del 2024		Coordenadas:	763063 E - 9005823 N
		25.420/	0/500	250/
1. Porcenta	ije que pasa la malla N°200:	26.12%		OS<=35%
2 Dougoust	sia mua maga la malla NIº40.	88.61%	IVIATERIALES	GRANULARES
Z. Porcent	aje que pasa la malla N°40:	88.01%		
3. Porcent:	aje que pasa la malla N°10:	99.04%	_	
311 Sicent	aje que pasa la mana iv 10.	33.0 170	_	
CF	RITERIO GRANULOMETRÍA		CRITERIO LIMITES ATTE	ERBEG
		<u>-</u>		
	CU: NP		LL: 25.37%	
		_		7
	CC: NP		IP: 7	
		(1) 105 55 65115		
		ÍNDICE DE GRUF	0	
		0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES				
GRUPO TIPOLOGÍA CALIDAD				
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O		
A-2-4	LIMOSA	BUENO		

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

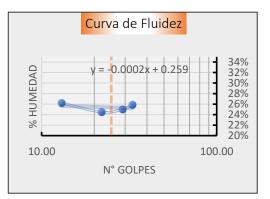
Muestra: Calicata N° 6 Estrato 1 Profundidad: 0 m - 1.15 m

Fecha: Setiembre del 2024 Coordenadas: 762764 E - 9005482 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	302.00
Peso final de la muestra (g)	299.70

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.000	100.00%
N°10	2.000	0.000	100.00%
N°20	0.840	0.300	99.90%
N°40	0.425	5.200	98.16%
N°60	0.250	32.100	87.45%
N°100	0.149	131.400	43.61%
N°200	0.074	29.800	33.67%
> N°200	·	100.900	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)					
PARAMETRO		Tara N°			
PARAIVIETRO	1 2 3 4				
1. Numero de golpes	13.000	22.000	29.000	33.000	
2. Peso de la tara (gr)	21.910	22.600	21.750	21.750	
3. Peso tara + Suelo humedo (gr)	35.150	34.300	32.500	32.700	
4. Peso tara + Suelo seco (gr)	32.400	32.000	30.350	30.450	
5. Peso agua (gr)	2.750	2.300	2.150	2.250	
6. Peso Suelo seco (gr)	10.490	9.400	8.600	8.700	
7. Contenido Humedad (%)	26.22%	24.47%	25.00%	25.86%	

B. LIMITE PLASTICO (MTC E 111)				
PARAMETRO		Tara N°		
PARAIVIETRO	1	1 2 3		
1. Peso de la tara (gr)	21.930	22.610	27.300	
2. Peso tara + Suelo humedo (gr)	24.010	26.700	31.500	18%
3. Peso tara + Suelo seco (gr)	23.710	26.100	30.800	10%
4. Peso agua (gr)	0.300	0.600	0.700	
5. Peso Suelo seco (gr)	1.780	3.490	3.500	
6. Contenido Humedad (%)	16.85%	17.19%	20.00%	

PARAMETROS				
PARAMETROS	1	2	3	
1. Peso de la tara (gr)	28.701	27.883	28.010	
2. Peso tara + Suelo humedo (gr)	108.004	110.557	106.693	0.049/
3. Peso tara + Suelo seco (gr)	101.408	103.786	100.105	9.04%

Grava %	0.00%
Arena %	66.33%
Finos %	33.67%
Limite Líquido	25%
Limite Plástico	18%
Índice de Plasticidad	7
Contenido Humedad	9.04%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

6.596	6.771	6.588	
72.707	75.903	72.095	
9.07%	8.92%	9.14%	

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash Proyecto: Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash. Calicata N° Muestra: Estrato Profundidad: 0 m - 1.15 m Fecha: Setiembre del 2024 Coordenadas: 762764 E - 9005482 N

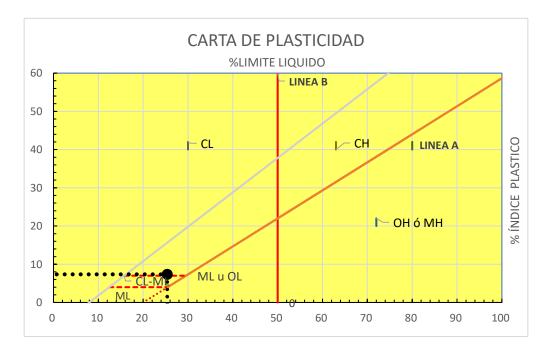
1. Porcentaje que pasa la malla N°200: 33.67%

2. Porcentaje que pasa la malla N°4: 100.00%

%FINOS<50% **SUELO DE PARTICULAS GRUESAS** %ARENA>50% **ARENA**

%FINOS>12% **CRITERIO PARA CLASIFICACIÓN:**

CRITERIO GRANULOMETRÍA


CRITERIO LIMITES ATTERBEG

NP CU:

25.37% LL:

CC: NP

IP: 7

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 6 Estrato 1 Profundidad: 0 m - 1.15 m

Fecha: Setiembre del 2024 Coordenadas: 762764 E - 9005482 N

1. Porcentaje que pasa la malla N°200: 33.67%

%FINOS<=35%
MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 99.90%

3. Porcentaje que pasa la malla N°10: 100.00%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

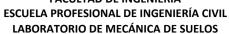
25.37%

CU: NP

IP: 7

LL:

ÍNDICE DE GRUPO


CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES				
GRUPO TIPOLOGÍA CALIDAD				
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O		
A-2-4	LIMOSA	BUENO		

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

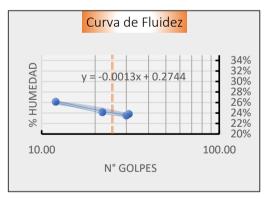

Calicata N° 4 Estrato Muestra: Profundidad: 1.50 m - 3.50 m

Setiembre del 2024 762875 E - 9005654 N Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

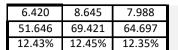
Peso total de la muestra (g)	
Peso final de la muestra (g)	394.41

			·
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	8.700	97.79%
N°10	2.000	1.900	97.31%
N°20	0.840	5.200	95.99%
N°40	0.425	10.700	93.28%
N°60	0.250	47.000	81.36%
N°100	0.149	178.010	36.23%
N°200	0.074	19.900	31.19%
> N°200		123.000	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)					
PARAMETRO		Tara N°			
PARAIVIETRO	1	2	3	4	
1. Numero de golpes	12.000	22.000	30.000	31.000	
2. Peso de la tara (gr)	29.100	28.300	28.500	28.100	
3. Peso tara + Suelo humedo (gr)	40.200	61.200	72.100	72.300	
4. Peso tara + Suelo seco (gr)	37.900	54.800	63.800	63.800	
5. Peso agua (gr)	2.300	6.400	8.300	8.500	
6. Peso Suelo seco (gr)	8.800	26.500	35.300	35.700	
7. Contenido Humedad (%)	26.14%	24.15%	23.51%	23.81%	


B. LIMITE PLASTICO (MTC E 111)					
DADAMETRO	Tara N°				
PARAMETRO	1	2	3		
1. Peso de la tara (gr)	28.000	30.700	29.700		
2. Peso tara + Suelo humedo (gr)	42.900	46.700	45.700	210/	
3. Peso tara + Suelo seco (gr)	40.300	44.000	42.900	21%	
4. Peso agua (gr)	2.600	2.700	2.800		
5. Peso Suelo seco (gr)	12.300	13.300	13.200		
6. Contenido Humedad (%)	21.14%	20.30%	21.21%		

PARAMETROS				
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	27.269	28.266	29.053	
2. Peso tara + Suelo humedo (gr)	85.335	106.332	101.738	12.41%
3. Peso tara + Suelo seco (gr)	78.915	97.687	93.750	12.41%

Grava %	2.21%
Arena %	66.61%
Finos %	31.19%
Limite Líquido	24%
Limite Plástico	21%
Índice de Plasticidad	3
Contenido Humedad	12.41%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

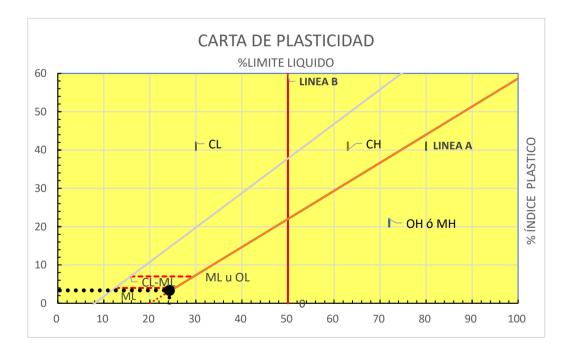
	CLASIF	FICA	CION DI	E SUEL	OS POR EL N	IETODO SUCS	
Proyecto:						de Santa, Provincia de Santa,	ll ll
Localización:	Cambio Puente	- Tambo	Real Viejo, disti	ito Chimbote,	Provincia Santa, Ancash.		
Muestra:	Calicata N°	4	Estrato	2		Profundidad:	1.50 m - 3.50 m
Fecha:	Setiembre del 2	2024				Coordenadas:	762875 E - 9005654 N

1. Porcentaje que pasa la malla N°200: 31.19%

2. Porcentaje que pasa la malla N°4: 97.79%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CU: NP

CRITERIO LIMITES ATTERBEG

LL: 24.24%

IP: 3

En conclusión es un suelo:

SM

ARENA LIMOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 4 Estrato 2 Profundidad: 1.50 m - 3.50 m

Fecha: Setiembre del 2024 Coordenadas: 762875 E - 9005654 N

1. Porcentaje que pasa la malla N°200: 31.19%

%FINOS<=35%
MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 95.99%

3. Porcentaje que pasa la malla N°10: 97.31%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

IP: 3

ÍNDICE DE GRUPO 0

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES					
GRUPO	TIPOLOGÍA	CALIDAD			
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O			
A-Z-4	LIMOSA	BUENO			

En conclusión es un suelo: A-2-4(0)

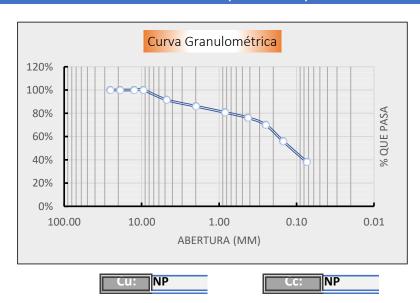
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

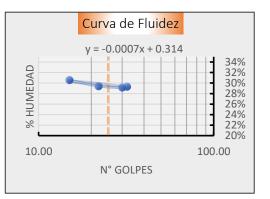

Muestra: Calicata N° 08 Estrato 02 Profundidad: 1.55 m - 3.50 m

Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

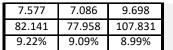
Peso total de la muestra (g)	411.90
Peso final de la muestra (g)	411.80

			ļ.
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	34.800	91.55%
N°10	2.000	22.500	86.09%
N°20	0.840	21.900	80.77%
N°40	0.425	18.900	76.18%
N°60	0.250	25.200	70.06%
N°100	0.149	57.900	56.00%
N°200	0.074	73.500	38.15%
> N°200		157.100	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LI	A. LIMITE LIQUIDO (MTC E 110)					
PARAMETRO		Tara	a N°			
PARAMETRO	1	2	3	4		
1. Numero de golpes	32.000	30.000	22.000	15.000		
2. Peso de la tara (gr)	28.100	27.900	26.900	27.900		
3. Peso tara + Suelo humedo (gr)	35.600	34.100	40.100	32.600		
4. Peso tara + Suelo seco (gr)	33.900	32.700	37.100	31.500		
5. Peso agua (gr)	1.700	1.400	3.000	1.100		
6. Peso Suelo seco (gr)	5.800	4.800	10.200	3.600		
7. Contenido Humedad (%)	29.31%	29.17%	29.41%	30.56%		


B. LIMITE PLASTICO (MTC E 111)					
DADAMETRO		Tara N°			
PARAMETRO	1	2	3		
1. Peso de la tara (gr)	26.800	28.400	27.300		
2. Peso tara + Suelo humedo (gr)	30.300	32.800	31.500	20%	
3. Peso tara + Suelo seco (gr)	29.700	32.100	30.800	20%	
4. Peso agua (gr)	0.600	0.700	0.700		
5. Peso Suelo seco (gr)	2.900	3.700	3.500		
6. Contenido Humedad (%)	20.69%	18.92%	20.00%		

PARAMETROS	Tara N°			
PARAIVIETRO3	1 2 3			
1. Peso de la tara (gr)	28.428	29.316	28.099	
2. Peso tara + Suelo humedo (gr)	118.146	114.360	145.628	0.100/
3. Peso tara + Suelo seco (gr)	110.569	107.274	135.930	9.10%

Grava %	8.45%
Arena %	53.40%
Finos %	38.15%
Limite Líquido	30%
Limite Plástico	20%
Índice de Plasticidad	10
Contenido Humedad	9.10%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2 -4 (0)
Gravedad Especifica	2.672
Índice de Grupo	0.40

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 08 Estrato 02 Profundidad: 1.55 m - 3.50 m

Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N

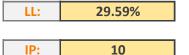
1. Porcentaje que pasa la malla N°200: 38.15%

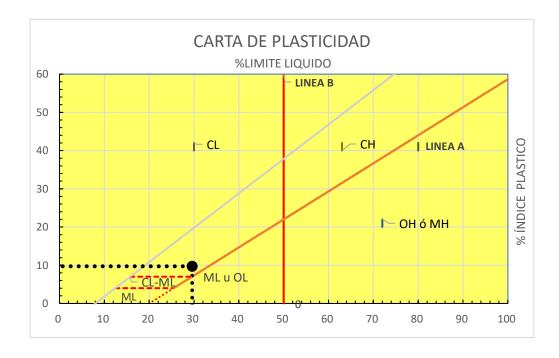
2. Porcentaje que pasa la malla N°4: 91.55%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS

%ARENA>50%

ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancasi Proyecto: Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash. Muestra: Calicata N° 08 Estrato 02 Profundidad: 1.55 m - 3.50 m Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N 1. Porcentaje que pasa la malla N°200: 38.15% 80.77% 2. Limites de Consistencia: 86.09% 3. Porcentaje que pasa la malla N°10: CRITERIO GRANULOMETRÍA CRITERIO LIMITES ATTERBEG

CU:	NP
	-
CC:	NP

LL:	29.59%		
IP:	10		

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

GRUPO	TIPOLOGÍA	CALIDAD
۸ ۵ ۵(۵)		EXCELENTE A
A-2-4(0)	SUELO ARENA ARCILLOSO	BUENO

En conclusión es un suelo:

A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

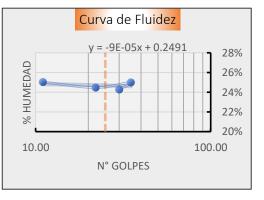
Muestra: Calicata N° 06 Estrato 02 Profundidad: 1.5 m - 3.5 m

Fecha: Setiembre del 2024 Coordenadas: 762764 E - 9005482 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

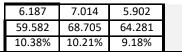
Peso total de la muestra (g)	536.30
Peso final de la muestra (g)	534.60

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.800	99.85%
N°10	2.000	3.500	99.20%
N°20	0.840	4.800	98.30%
N°40	0.425	37.900	91.21%
N°60	0.250	152.300	62.72%
N°100	0.149	136.700	37.15%
N°200	0.074	97.700	18.87%
> N°200	·	100.900	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)				
PARAMETRO	Tara N°			
PARAIVIETRO	1	2	3	4
1. Numero de golpes	11.000	22.000	35.000	30.000
2. Peso de la tara (gr)	21.910	22.600	21.750	21.850
3. Peso tara + Suelo humedo (gr)	35.150	34.300	32.500	32.600
4. Peso tara + Suelo seco (gr)	32.500	32.000	30.350	30.500
5. Peso agua (gr)	2.650	2.300	2.150	2.100
6. Peso Suelo seco (gr)	10.590	9.400	8.600	8.650
7. Contenido Humedad (%)	25.02%	24.47%	25.00%	24.28%


B. LIMITE PLASTICO (MTC E 111)					
PARAMETRO	Tara N°				
PARAIVIETRO	1	2	3		
1. Peso de la tara (gr)	21.930	22.610	23.610		
2. Peso tara + Suelo humedo (gr)	24.010	26.700	27.700	17%	
3. Peso tara + Suelo seco (gr)	23.710	26.100	27.150	1/70	
4. Peso agua (gr)	0.300	0.600	0.550		
5. Peso Suelo seco (gr)	1.780	3.490	3.540		
6. Contenido Humedad (%)	16.85%	17.19%	15.54%		

PARAMETROS	Tara N°			
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	29.966	29.009	28.686	
2. Peso tara + Suelo humedo (gr)	95.735	104.728	98.869	0.030/
3. Peso tara + Suelo seco (gr)	89.548	97.714	92.967	9.92%

Grava %	0.15%
Arena %	80.98%
Finos %	18.87%
Limite Líquido	25%
Limite Plástico	17%
Índice de Plasticidad	8
Contenido Humedad	9.92%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto: "Mejora de las propiedades del suelo, con Cloruro de Sodio, en el acceso Tambo Real Viejo - Cambio Puente, Chimbote 2022". Il

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

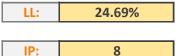
Muestra: Calicata N° 6 Estrato 02 Profundidad: 1.5 m - 3.5 m

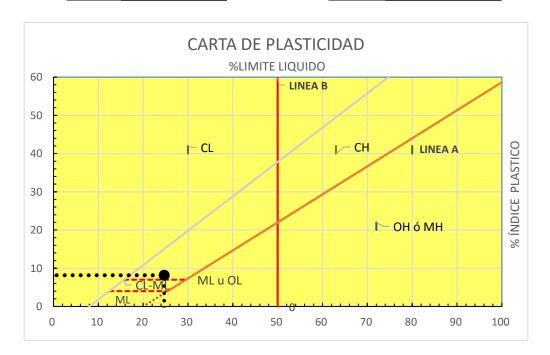
Fecha: Setiembre del 2024 Coordenadas: 762764 E - 9005482 N

1. Porcentaje que pasa la malla N°200: 18.87%

2. Porcentaje que pasa la malla N°4: 99.85%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Mejora de las propiedades del suelo, con Cloruro de Sodio, en el acceso Tambo Real Viejo - Cambio Puente, Chimbote 2022". Il

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

 Muestra:
 Calicata N°
 6
 Estrato
 02
 Profundidad:
 1.5 m - 3.5 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 762764 E - 9005482 N

1. Porcentaje que pasa la malla N°200: 18.87%

7%

%FINOS<=35%

MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 98.30%

3. Porcentaje que pasa la malla N°10: 99.20%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

LL: 24.69%

CC: NP

IP: 8

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA	CALIDAD	
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O	
A-2-4	LIMOSA	BUENO	

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

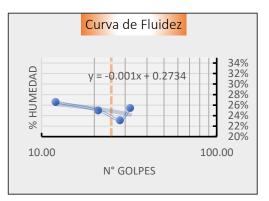
Muestra: Calicata N° 7 Estrato 1 Profundidad: 0 m - 1.15 m

Fecha: Setiembre del 2024 Coordenadas: 762604 E - 9005429 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (MTC E107)

Peso total de la muestra (g)	328.00
Peso final de la muestra (g)	326.30

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	13.500	95.86%
N°10	2.000	2.500	95.10%
N°20	0.840	4.400	93.75%
N°40	0.425	20.600	87.43%
N°60	0.250	36.700	76.19%
N°100	0.149	109.300	42.69%
N°200	0.074	19.300	36.78%
> N°200		120.000	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)					
PARAMETRO	Tara N°				
PARAIVIETRO	1	2	3	4	
1. Numero de golpes	12.000	21.000	28.000	32.000	
2. Peso de la tara (gr)	28.500	27.600	28.800	27.900	
3. Peso tara + Suelo humedo (gr)	40.400	61.600	71.900	68.300	
4. Peso tara + Suelo seco (gr)	37.900	54.800	63.800	60.100	
5. Peso agua (gr)	2.500	6.800	8.100	8.200	
6. Peso Suelo seco (gr)	9.400	27.200	35.000	32.200	
7. Contenido Humedad (%)	26.60%	25.00%	23.14%	25.47%	

B. LIMITE PLASTICO (MTC E 111)				
DARAMETRO		Tara N°		
PARAMETRO	1	2	3	
1. Peso de la tara (gr)	28.000	30.700	27.300	
2. Peso tara + Suelo humedo (gr)	42.800	46.800	31.500	22%
3. Peso tara + Suelo seco (gr)	40.300	44.000	30.700	2270
4. Peso agua (gr)	2.500	2.800	0.800	
5. Peso Suelo seco (gr)	12.300	13.300	3.400	
6. Contenido Humedad (%)	20.33%	21.05%	23.53%	

PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.428	29.316	28.099	
2. Peso tara + Suelo humedo (gr)	118.146	114.360	145.628	0.100/
3. Peso tara + Suelo seco (gr)	110.569	107.274	135.930	9.10%

Grava %	4.14%
Arena %	59.09%
Finos %	36.78%
Limite Líquido	25%
Limite Plástico	22%
Índice de Plasticidad	3
Contenido Humedad	9.10%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

7.577	7.086	9.698
82.141	77.958	107.831
9.22%	9.09%	8.99%

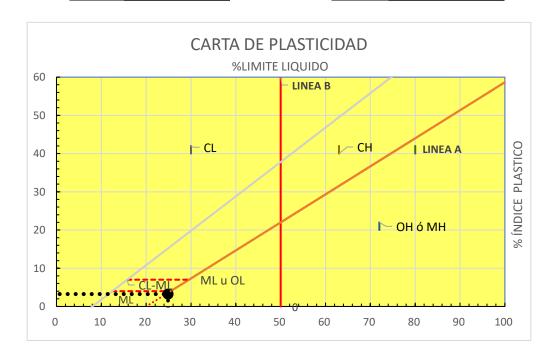
UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS					
Proyecto:	"Zonificación geotécn 2022"	ica con fines de ci	mentación en la zona urbana	del distrito de Santa, Provincia de Sar	nta, Departamento de Ancash
Localización:	Cambio Puente - Tam	bo Real Viejo, dist	rito Chimbote, Provincia Sant	a, Ancash.	
Muestra:	Calicata N° 7	Estrato	1	Profundidad:	0 m - 1.15 m
Fecha:	Setiembre del 2024			Coordenadas:	762604 E - 9005429 N
1. Porcenta	nje que pasa la malla	N°200:	36.78%	%FIN	NOS<50%
				SUELO DE PAR	TICULAS GRUESAS
2. Porcent	taie que pasa la mall	la N°4:	95.86%	%AR	FNA>50%

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

ARENA

CU: NP

LL: 24.88%
IP: 3

En conclusión es un suelo:

SM

ARENA LIMOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

Proyecto:		ines de cimentación en la zona urbar	na del distrito de Santa, Provincia de Sant	a, Departamento de _[Ancash
Localización:	Cambio Puente - Tambo Real	Viejo, distrito Chimbote, Provincia Sa	anta, Ancash.	
Muestra:	Calicata N° 7 Es	strato 1	Profundidad:	0 m - 1.15 m
Fecha:	Setiembre del 2024		Coordenadas:	762604 E - 9005429 N

CLASIFICACION DE SUELOS POR EL METODO AASHTO

1. Porcentaje que pasa la malla N°200: 36.78%

2. Limites de Consistencia: 93.75%

3. Porcentaje que pasa la malla N°10: 95.10%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

LL: 24.88%

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

GRUPO	TIPOLOGÍA	CALIDAD
A-4	SUELO LIMOSO	POBRE A MALO

En conclusión es un suelo: A-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

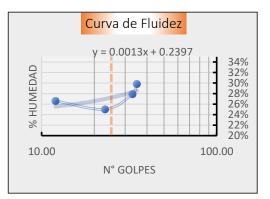
Muestra: Calicata N° 07 Estrato 02 Profundidad: 1.15 m - 3.48 m

Fecha: Setiembre del 2024 Coordenadas: 762604 E - 9005429 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

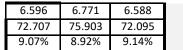
Peso total de la muestra (g)	302.00
Peso final de la muestra (g)	299.70

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.000	100.00%
N°10	2.000	0.000	100.00%
N°20	0.840	0.300	99.90%
N°40	0.425	5.200	98.16%
N°60	0.250	32.100	87.45%
N°100	0.149	131.400	43.61%
N°200	0.074	29.800	33.67%
> N°200	·	100.900	0.00%



2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)				
PARAMETRO	Tara N°			
PARAIVIETRO	1	2	3	4
1. Numero de golpes	35.000	33.000	23.000	12.000
2. Peso de la tara (gr)	28.100	28.800	27.600	28.500
3. Peso tara + Suelo humedo (gr)	71.200	71.900	61.600	40.400
4. Peso tara + Suelo seco (gr)	61.300	62.500	54.800	37.900
5. Peso agua (gr)	9.900	9.400	6.800	2.500
6. Peso Suelo seco (gr)	33.200	33.700	27.200	9.400
7. Contenido Humedad (%)	29.82%	27.89%	25.00%	26.60%


B. LIMITE PLASTICO (MTC E 111)				
DARAMETRO	Tara N°			
PARAMETRO	1	2	3	
1. Peso de la tara (gr)	28.000	30.700	27.300	
2. Peso tara + Suelo humedo (gr)	43.900	47.300	31.500	20%
3. Peso tara + Suelo seco (gr)	41.300	44.600	30.800	20%
4. Peso agua (gr)	2.600	2.700	0.700	
5. Peso Suelo seco (gr)	13.300	13.900	3.500	
6. Contenido Humedad (%)	19.55%	19.42%	20.00%	

PARAMETROS	Tara N°			
PARAMETROS	1	2	3	
1. Peso de la tara (gr)	28.701	27.883	28.010	
2. Peso tara + Suelo humedo (gr)	108.004	110.557	106.693	0.049/
3. Peso tara + Suelo seco (gr)	101.408	103.786	100.105	9.04%

Grava %	0.00%
Arena %	66.33%
Finos %	33.67%
Limite Líquido	27%
Limite Plástico	20%
Índice de Plasticidad	8
Contenido Humedad	9.04%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancast

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 07 Estrato 02 Profundidad: 1.15 m - 3.48 m

Fecha: Setiembre del 2024 Coordenadas: 762604 E - 9005429 N

1. Porcentaje que pasa la malla N°200: 33.67%

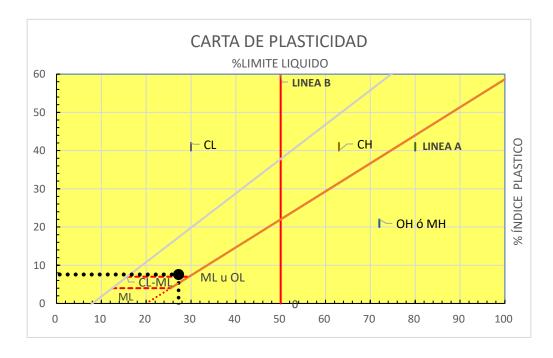
2. Porcentaje que pasa la malla N°4: 100.00%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS

%ARENA>50%

ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

 Muestra:
 Calicata N°
 07
 Estrato
 02
 Profundidad:
 1.15 m - 3.48 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 762604 E - 9005429 N

recha: Settembre del 2024 Coordenadas: 762604 E - 9005429 N

1. Porcentaje que pasa la malla N°200: 33.67%

7%

IP:

%FINOS<=35%
MATERIALES GRANULARES

2. Porcentaje que pasa la malla N°40: 99.90%

3. Porcentaje que pasa la malla N°10: 100.00%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

8

CU: NP

LL: 27.23%

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA CALIDA		
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O	
A-2-4	LIMOSA	BUENO	

En conclusión es un suelo:

A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

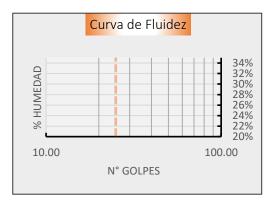
Muestra: Calicata N° 08 Estrato 01 Profundidad: 0 m - 1.55 m

Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	175.30
Peso final de la muestra (g)	181.70

			•
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	7.700	95.76%
N°10	2.000	10.100	90.20%
N°20	0.840	14.500	82.22%
N°40	0.425	15.600	73.64%
N°60	0.250	21.300	61.92%
N°100	0.149	51.200	33.74%
N°200	0.074	40.000	11.72%
> N°200		21.300	0.00%


2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE L	.IQUIDO (M	ITC E 110)			
DADAMETRO		Tai	ra N°		
PARAMETRO	1 2 3 4		4		
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)					
4. Peso tara + Suelo seco (gr)					
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

B. LIMITE PLASTICO (MTC E 111)				
PARAMETRO		Tara N°		
PARAIVIETRO	1	2	3	
1. Peso de la tara (gr)				
2. Peso tara + Suelo humedo (gr)	(r)			
3. Peso tara + Suelo seco (gr)				
4. Peso agua (gr)				
5. Peso Suelo seco (gr)				
6. Contenido Humedad (%)				

3. CONTENIDO DE HUMEDAD (E 108)

PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	29.674	28.814	29.094	
2. Peso tara + Suelo humedo (gr)	74.230	99.207	121.779	11 200/
3. Peso tara + Suelo seco (gr)	69.749	92.260	112.041	11.29%

Grava %	4.24%
Arena %	84.04%
Finos %	11.72%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	11.29%
Clasificacion SUCS	SP
Clasificacion AAHSTO	A-3
Índice de Grupo	0.00

4. Peso agua (gr)5. Peso Suelo seco (gr)6. Contenido Humedad (%)

4.481	6.947	9.738
40.075	63.446	82.947
11.18%	10.95%	11.74%

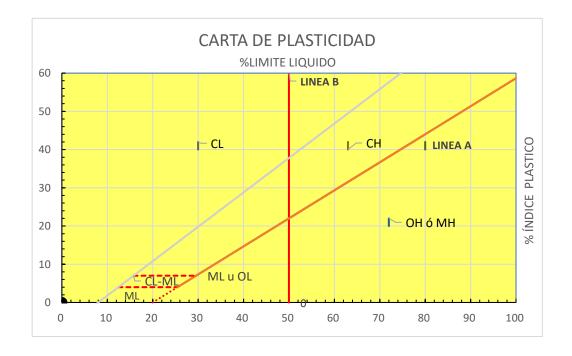
UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS				
Proyecto:	"Zonificación geotécnica con fines	de cimentación en la zona urbana	a del distrito de Santa, Provincia de Sant	a, Departamento de Ancash -
Localización:	Cambio Puente - Tambo Real Viejo,	distrito Chimbote, Provincia Sant	a, Ancash.	
Muestra:	Calicata N° 08 Estrato	01	Profundidad:	0 m - 1.55 m
Fecha:	Setiembre del 2024		Coordenadas:	762291 E - 9005294 N
1. Porcenta	ije que pasa la malla N°200:	11.72%	%FIN	IOS<50%
			SUELO DE PART	TICULAS GRUESAS
2. Porcent	taie que pasa la malla N°4:	95.76%	%ARI	ENA>50%

CRITERIO PARA CLASIFICACIÓN: 5%<=%FINOS<=12%


CRITERIO GRANULOMETRÍA

CU: NP

CRITERIO LIMITES ATTERBEG

ARENA

IP: NP

En conclusión es un suelo:

SP

ARENA MAL GRADUADO- ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE	SUELOS POI	R EL METODO AASHTO	
Proyecto: Localización:	"Zonificación geotécnica con fines de c 2022" Cambio Puente - Tambo Real Viejo, d		ana del distrito de Santa, Provincia de Santa, I Santa, Ancash.	Departamento de Ancash
Muestra:	Calicata N° 08 Estrato	01	Profundidad:	0 m - 1.55 m
Fecha:	Setiembre del 2024		Coordenadas:	762291 E - 9005294 N
1. Porcenta	aje que pasa la malla N°200:	11.72%	%FINC)S<=35%
			MATERIALES	GRANULARES
2. Porcent	aje que pasa la malla N°40:	82.22%		
		22.224	_	
3. Porcent	aje que pasa la malla N°10:	90.20%		
CF	RITERIO GRANULOMETRÍA		CRITERIO LIMITES ATTE	ERBEG
	CU: NP		LL: NP	1
		_		
	CC: NP		IP: NP	
		ÍNDICE DE GRU	PO	
		0		
CARAC	CTERISTICAS SEGÚN CUADRO) AASHTO		

MATERIALES GRANULARES		
GRUPO	TIPOLOGÍA	CALIDAD
A-3	ARENA MAL GRADUADA	

En conclusión es un suelo: A-3

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

2022

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

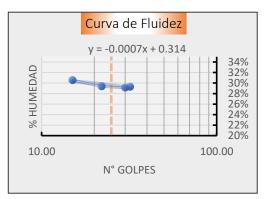
Muestra: Calicata N° 08 Estrato 02 Profundidad: 1.55 m - 3.50 m

Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	411.90
Peso final de la muestra (g)	411.80

			ļ.
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	34.800	91.55%
N°10	2.000	22.500	86.09%
N°20	0.840	21.900	80.77%
N°40	0.425	18.900	76.18%
N°60	0.250	25.200	70.06%
N°100	0.149	57.900	56.00%
N°200	0.074	73.500	38.15%
> N°200		157.100	0.00%


2. LIMITES DE CONSISTENCIA MTC (NTP 339.129)

A. LIMITE LIQUIDO (MTC E 110)				
PARAMETRO	Tara N°			
PARAIVIETRO	1	2	3	4
1. Numero de golpes	32.000	30.000	22.000	15.000
2. Peso de la tara (gr)	28.100	27.900	26.900	27.900
3. Peso tara + Suelo humedo (gr)	35.600	34.100	40.100	32.600
4. Peso tara + Suelo seco (gr)	33.900	32.700	37.100	31.500
5. Peso agua (gr)	1.700	1.400	3.000	1.100
6. Peso Suelo seco (gr)	5.800 4.800 10.200 3.600			
7. Contenido Humedad (%)	29.31%	29.17%	29.41%	30.56%

B. LIMITE PLASTICO (MTC E 111)				
DARAMETRO	Tara N°			
PARAMETRO	1	2	3	
1. Peso de la tara (gr)	26.800	28.400	27.300	
2. Peso tara + Suelo humedo (gr)	30.300	32.800	31.500	20%
3. Peso tara + Suelo seco (gr)	29.700	32.100	30.800	20%
4. Peso agua (gr)	0.600	0.700	0.700	
5. Peso Suelo seco (gr)	2.900	3.700	3.500	
6. Contenido Humedad (%)	20.69%	18.92%	20.00%	

3. CONTENIDO DE HUMEDAD (E 108)

PARAMETROS		Tara N°		
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.428	29.316	28.099	
2. Peso tara + Suelo humedo (gr)	118.146	114.360	145.628	0.100/
3. Peso tara + Suelo seco (gr)	110.569	107.274	135.930	9.10%

Grava %	8.45%
Arena %	53.40%
Finos %	38.15%
Limite Líquido	30%
Limite Plástico	20%
Índice de Plasticidad	10
Contenido Humedad	9.10%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2 -4 (0)
Gravedad Especifica	2.672
Índice de Grupo	0.40

4. Peso agua (gr)5. Peso Suelo seco (gr)6. Contenido Humedad (%)

7.577	7.086	9.698
82.141	77.958	107.831
9.22%	9.09%	8.99%

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

Proyecto: "Mejora de las propiedades del suelo, con Cloruro de Sodio, en el acceso Tambo Real Viejo - Cambio Puente, Chimbote 2022". I

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

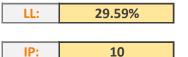
Muestra: Calicata N° 08 Estrato 02 Profundidad: 1.55 m - 3.50 m

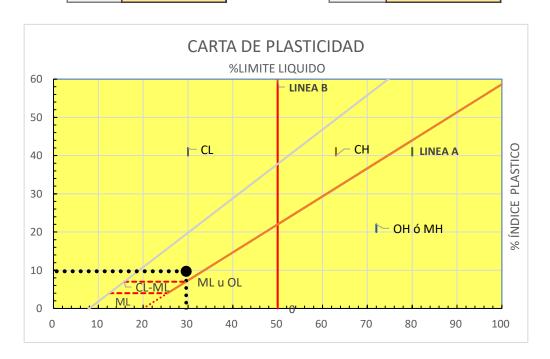
Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N

1. Porcentaje que pasa la malla N°200: 38.15%

2. Porcentaje que pasa la malla N°4: 91.55%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%
ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%


CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP

En conclusión es un suelo:

SC

ARENA ARCILLOSO

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Localización: Cambio Puente - Tambo Real Viejo, distrito Chimbote, Provincia Santa, Ancash.

Muestra: Calicata N° 08 Estrato 02 Profundidad: 1.55 m - 3.50 m

Fecha: Setiembre del 2024 Coordenadas: 762291 E - 9005294 N

1. Porcentaje que pasa la malla N°200: 38.15%

2. Limites de Consistencia: 80.77%

3. Porcentaje que pasa la malla N°10: 86.09%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

10

CU: NP

LL: 29.59%

IP:

ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

GRUPO	TIPOLOGÍA	CALIDAD
۸ ۵ ۵(۵)		EXCELENTE A
A-2-4(0)	SUELO ARENA ARCILLOSO	BUENO

En conclusión es un suelo: A-2-4(0)

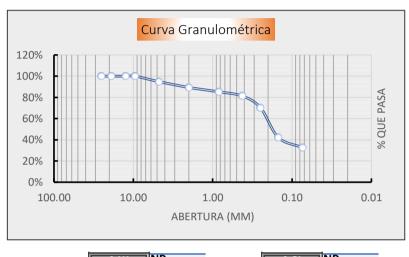
FACULTAD DE INGENIERÍA
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL
LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022"

Localización Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan


Muestra: Calicata N° 09 Estrato 01 Profundidad: 0.00 - 1.50 m

Fecha: Setiembre del 2024 Coordenadas: 9004989 m S - 762345 m E

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	276.34

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	14.200	94.86%
N°10	2.000	15.200	89.36%
N°20	0.840	11.400	85.24%
N°40	0.425	10.800	81.33%
N°60	0.250	30.700	70.22%
N°100	0.149	77.400	42.21%
N°200	0.074	26.500	32.62%
> N°200	·	90.140	0.00%

Cu: NP

CC: NP

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO				
PARAMETRO	Tara N°			
PARAIVIETRO	1	2	3	4
1. Numero de golpes	17.000	22.000	26.000	34.000
2. Peso de la tara (gr)	27.400 27.000 28.400 18.160			
3. Peso tara + Suelo humedo (gr)	32.900 34.800 36.900 41.550			
4. Peso tara + Suelo seco (gr)	31.850	33.350	35.350	37.320
5. Peso agua (gr)	1.050 1.450 1.550 4.230			
6. Peso Suelo seco (gr)	4.450	6.350	6.950	19.160
7. Contenido Humedad (%)	23.60%	22.83%	22.30%	22.08%

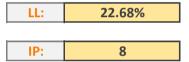
B. LIMITE PLASTICO				
DARAMETRO	Tara N°			
PARAMETRO	1	2	3	
1. Peso de la tara (gr)	27.400	28.300	27.200	
2. Peso tara + Suelo humedo (gr)	30.300	31.100	30.100	1 / 70/
3. Peso tara + Suelo seco (gr)	29.930	30.730	29.740	14.7%
4. Peso agua (gr)	0.370	0.370	0.360	
5. Peso Suelo seco (gr)	2.530	2.430	2.540	
6. Contenido Humedad (%)	14.62%	15.23%	14.17%	

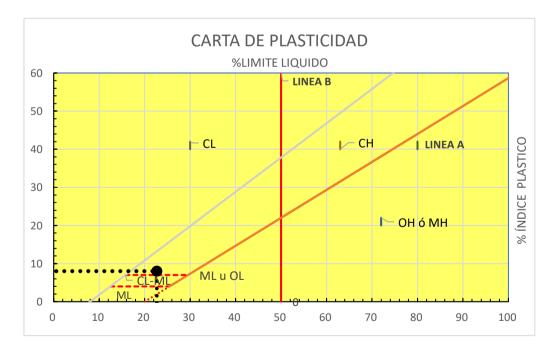
PARAMETROS	Tara N°			
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.506	29.487	28.533	
2. Peso tara + Suelo humedo (gr)	94.723	91.733	83.336	11 260/
3. Peso tara + Suelo seco (gr)	88.077	85.295	77.727	11.36%
4. Peso agua (gr)	6.646	6.438	5.609	
5. Peso Suelo seco (gr)	59.571	55.808	49.194	
6. Contenido Humedad (%)	11.16%	11.54%	11.40%	

Grava %	5.14%
Arena %	62.24%
Finos %	32.62%
Limite Líquido	22.68%
Limite Plástico	15%
Índice de Plasticidad	8
Contenido Humedad	11.36%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA
ESCUELA PROFESIONAL DE INGENIERÍA CIVIL
LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS


CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Provecto: Localización: Distrito Santa, Provincia Santa, Ancash Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas Calicata N° Muestra: Profundidad: **Estrato** 01 0.00 - 1.50 m Setiembre del 2024 9004989 m S - 762345 m E Fecha: Coordenadas: 1. Porcentaje que pasa la malla N°200: 32.62% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 94.86% %ARENA>50% **ARENA**


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU:	NP
CC:	NP

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE	SUELOS POR	R EL METODO AASHT	U
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urba	na del distrito de Santa, Provincia de Santa	, Departamento de Ancash -
Localización:	Distrito Santa, Provincia Santa, Ancas			
Tesistas	Montalvan Gonzales Katerinhe Palom		er Juan	
Muestra:	Calicata N° 09 Estrato		Profundidad:	0.00 - 1.50 m
Fecha:	Setiembre del 2024	_	Coordenadas:	9004989 m S - 762345 m E
		_		
			_	
1. Porcenta	je que pasa la malla N°200:	32.62%		NOS<=35%
			MATERIALE	S GRANULARES
2. Porcenta	aje que pasa la malla N°40:	85.24%		
2 Dawsonto	air ann an an Iomraille Nig10.	89.36%	-	
3. Porcenta	aje que pasa la malla N°10:	69.50%		
CR	RITERIO GRANULOMETRÍA		CRITERIO LIMITES AT	TERBEG
		_		
	CU: NP		LL: 22.68%	
		_		_
	CC: NP		IP: 8	
		ÍNDICE DE GRU	PO	
		0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA	CALIDAD	
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O	
A-Z-4	LIMOSA	BUENO	

En conclusión es un suelo: A-2-4(0)

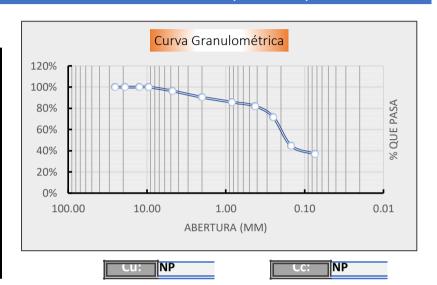
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan


 Muestra:
 Calicata N°
 09
 Estrato
 02
 Profundidad:
 1.50 - 3.00 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 9004989 m S - 762345 m E

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	314.00
Peso final de la muestra (g)	313.90

-			
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	11.400	96.37%
N°10	2.000	18.700	90.41%
N°20	0.840	14.500	85.79%
N°40	0.425	11.700	82.06%
N°60	0.250	32.600	71.68%
N°100	0.149	84.500	44.76%
N°200	0.074	24.800	36.86%
> N°200	·	115.700	0.00%

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO						
DADAMETRO		Tara N°				
PARAMETRO	1 2 3 4					
1. Numero de golpes	20.000	34.000	24.000	14.000		
2. Peso de la tara (gr)	28.800	28.200	27.200	18.160		
3. Peso tara + Suelo humedo (gr)	36.900	34.600	32.000	41.550		
4. Peso tara + Suelo seco (gr)	35.170	33.280	31.000	36.500		
5. Peso agua (gr)	1.730	1.320	1.000	5.050		
6. Peso Suelo seco (gr)	6.370	5.080	3.800	18.340		
7. Contenido Humedad (%)	27.16%	25.98%	26.32%	27.54%		

B. LIMITE PLASTICO					
DARAMETRO		Tara N°			
PARAMETRO	1	2	3		
1. Peso de la tara (gr)	27.800	28.600	27.100		
2. Peso tara + Suelo humedo (gr)	30.600	30.800	30.300	18%	
3. Peso tara + Suelo seco (gr)	30.170	30.460	29.810	10%	
4. Peso agua (gr)	0.430	0.340	0.490		
5. Peso Suelo seco (gr)	2.370	1.860	2.710		
6. Contenido Humedad (%)	18.14%	18.28%	18.08%		

PARAMETROS		Tara N°		
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	28.170	31.595	28.191	
2. Peso tara + Suelo humedo (gr)	92.114	82.560	80.826	17 700/
3. Peso tara + Suelo seco (gr)	82.093	74.814	73.237	17.78%
4. Peso agua (gr)	10.021	7.746	7.589	
5. Peso Suelo seco (gr)	53.923	43.219	45.046	
6. Contenido Humedad (%)	18.58%	17.92%	16.85%	

Grava %	3.63%
Arena %	59.51%
Finos %	36.86%
Limite Líquido	27%
Limite Plástico	18%
Índice de Plasticidad	8
Contenido Humedad	17.78%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata N° 02 Profundidad: Muestra: Estrato 1.50 - 3.00 m 09 Fecha: Setiembre del 2024 Coordenadas: 9004989 m S - 762345 m E

36.86% 1. Porcentaje que pasa la malla N°200:

%FINOS<50%

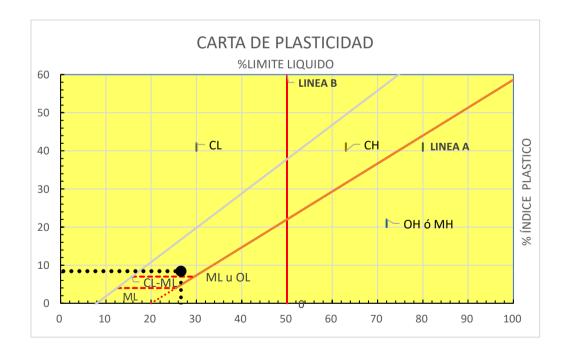
2. Porcentaje que pasa la malla N°4:

96.37%

SUELO DE PARTICULAS GRUESAS

%ARENA>50%

ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

CC: NP LL: 26.59% IP: 8

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE	SUELOS POR	EL MET	ODO AASHTO	
	"Zonificación geotécnica con fines de ci	mentación en la zona urbana	a del distrito de S	Santa, Provincia de Santa, De	epartamento de Ancash -
Proyecto:	2022"[]				
Localización:	Distrito Santa, Provincia Santa, Ancash	<u> </u>			
Tesistas	Montalvan Gonzales Katerinhe Paloma	- Guzmán Vásquez Rogger	Juan		
Muestra:	Calicata N° 09 Estrato	02		Profundidad:	1.50 - 3.00 m
Fecha:	Setiembre del 2024			Coordenadas:	9004989 m S - 762345 m E
1. Porcen	taje que pasa la malla N°200:	36.86%	1	%FINC	OS>35%
			1	MATERIALES LIM	OSO ARCILLOSO
2. Porcer	ntaje que pasa la malla N°40:	85.79%	1		
3. Porcen	ntaje que pasa la malla N°10:	90.41%	1		
	CRITERIO GRANULOMETRÍA	T	CRIT	ERIO LIMITES ATTE	RBEG
		_			_
	CU: NP	1	LL:	26.59%	1
		_			
	CC: NP	T	IP:	8	1
	- 141	_		<u> </u>	J
		ÍNDICE DE GRUP	0		
		0	l		
		U			

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO		
GRUPO	TIPOLOGÍA	CALIDAD
A-4	SUELO LIMOSO	POBRE A MALO

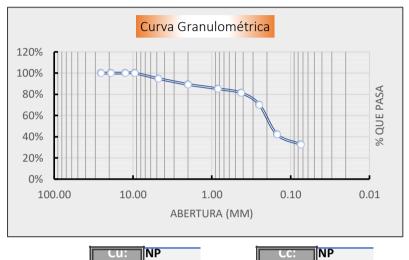
En conclusión es un suelo: A-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:


Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas

Calicata N° 10 Estrato 0.00 - 1.70 m Muestra: Profundidad: Setiembre del 2024 9005582 m S - 762338 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	277.00
Peso final de la muestra (g)	276.34

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	14.200	94.86%
N°10	2.000	15.200	89.36%
N°20	0.840	11.400	85.24%
N°40	0.425	10.800	81.33%
N°60	0.250	30.700	70.22%
N°100	0.149	77.400	42.21%
N°200	0.074	26.500	32.62%
> N°200	·	90.140	0.00%


NP

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
PARAMETRO	Tara N°				
PARAIVIETRO	1	2	3	4	
1. Numero de golpes	32.000	26.000	20.000	10.000	
2. Peso de la tara (gr)	21.550	20.500	22.610	18.160	
3. Peso tara + Suelo humedo (gr)	43.160	40.440	43.260	41.550	
4. Peso tara + Suelo seco (gr)	39.550	36.950	39.440	36.850	
5. Peso agua (gr)	3.610	3.490	3.820	4.700	
6. Peso Suelo seco (gr)	18.000	16.450	16.830	18.690	
7. Contenido Humedad (%)	20.06%	21.22%	22.70%	25.15%	

B. LIMITE PLASTICO					
DADAMETRO					
PARAMETRO	1	2	3		
1. Peso de la tara (gr)	23.780	21.580	22.360		
2. Peso tara + Suelo humedo (gr)	30.300	33.840	29.970	14%	
3. Peso tara + Suelo seco (gr)	29.500	32.310	29.050	14%	
4. Peso agua (gr)	0.800	1.530	0.920		
5. Peso Suelo seco (gr)	5.720	10.730	6.690		
6. Contenido Humedad (%)	13.99%	14.26%	13.75%		

PARAMETROS				
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	30.427	30.064	30.401	
2. Peso tara + Suelo humedo (gr)	91.926	91.305	97.318	10 020/
3. Peso tara + Suelo seco (gr)	85.567	85.799	90.661	10.82%
4. Peso agua (gr)	6.359	5.506	6.657	
5. Peso Suelo seco (gr)	55.140	55.735	60.260	
6. Contenido Humedad (%)	11.53%	9.88%	11.05%	

Grava %	5.14%
Arena %	62.24%
Finos %	32.62%
Limite Líquido	22%
Limite Plástico	14%
Índice de Plasticidad	8
Contenido Humedad	10.82%
Clasificacion SUCS	SC
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

 Muestra:
 Calicata N°
 10
 Estrato
 01
 Profundidad:
 0.00 - 1.70 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 9005582 m S - 762338 m E

1. Porcentaje que pasa la malla N°200: 32.62%

2. Porcentaje que pasa la malla N°4: 94.86%

%FINOS<50%

SUELO DE PARTICULAS GRUESAS

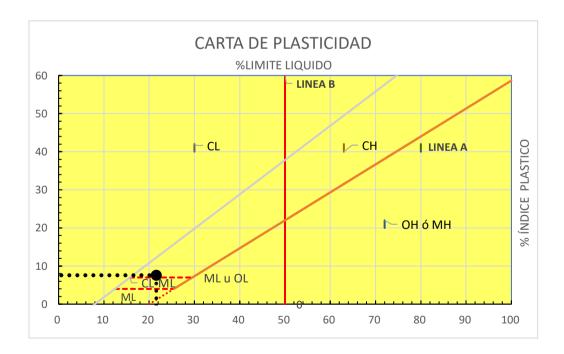
%ARENA>50%

ARENA

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

LL:

CRITERIO GRANULOMETRÍA


CRITERIO LIMITES ATTERBEG

21.58%

8

CU: NP

CC: NP IP:

UNS UNIVERSIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE S	SUELOS POR	EL MET	ODO AASHTO	
Proyecto:		nentación en la zona urbana	a del distrito de	Santa, Provincia de Santa, I	Departamento de Ancash -
Tesistas	Montalvan Gonzales Katerinhe Paloma -	· Guzmán Vásquez Rogger	Juan		
Muestra:	Calicata N° 10 Estrato	01		Profundidad:	0.00 - 1.70 m
Fecha:	Setiembre del 2024	-		Coordenadas:	9005582 m S - 762338 m E
1. P	orcentaje que pasa la malla N°200:	32.62%]		OS<=35% GRANULARES
2. F	Porcentaje que pasa la malla N°40:	85.24%			
			-		
3. F	Porcentaje que pasa la malla N°10:	89.36%			
·		7			
	CRITERIO GRANULOMETRÍA		CRIT	ERIO LIMITES ATT	ERBEG
	CU: NP	I	LL:	21.58%	
	CC: NP]	IP:	8	

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES					
GRUPO	TIPOLOGÍA	CALIDAD			
A-2-4	GRAVA Y ARENA ARCILLOSA O	EXCELENTE O			
A-2-4	LIMOSA	BUENO			

ÍNDICE DE GRUPO 0

En conclusión es un suelo: A-2-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022'

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

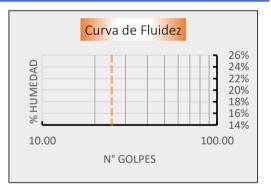
Muestra: Calicata N° 10 Estrato 02 Profundidad: 1.40 - 2.90 m

Fecha: Setiembre del 2024 Coordenadas: 9005582 m S - 762338 m E

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	425.00
Peso final de la muestra (g)	422.50

-			•
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	11.700	97.23%
N°10	2.000	15.100	93.66%
N°20	0.840	17.800	89.44%
N°40	0.425	22.400	84.14%
N°60	0.250	56.400	70.79%
N°100	0.149	63.500	55.76%
N°200	0.074	15.600	52.07%
> N°200		220.000	0.00%



2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO						
PARAMETRO			Ta	ra N°		
PARAIVIETRO	1		2	3	4	
1. Numero de golpes						
2. Peso de la tara (gr)						
3. Peso tara + Suelo humedo (gr)	NO PRESENTA					
4. Peso tara + Suelo seco (gr)						
5. Peso agua (gr)						
6. Peso Suelo seco (gr)						
7. Contenido Humedad (%)						

B. LIMITE PLASTICO					
DADAMETRO		Tara N°			
PARAIVIETRO	PARAMETRO 1 2				
1. Peso de la tara (gr)					
2. Peso tara + Suelo humedo (gr)	NO PRESENTA				
3. Peso tara + Suelo seco (gr)					
4. Peso agua (gr)					
5. Peso Suelo seco (gr)					
6. Contenido Humedad (%)					

PARAMETROS				
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	29.515	28.704	29.256	
2. Peso tara + Suelo humedo (gr)	81.559	83.356	78.953	17 210/
3. Peso tara + Suelo seco (gr)	74.412	74.412	71.939	17.31%
4. Peso agua (gr)	7.147	8.944	7.014	
5. Peso Suelo seco (gr)	44.897	45.708	42.683	
6. Contenido Humedad (%)	15.92%	19.57%	16.43%	

Grava %	2.77%
Arena %	45.16%
Finos %	52.07%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	17.31%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA

CS - SUCS

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

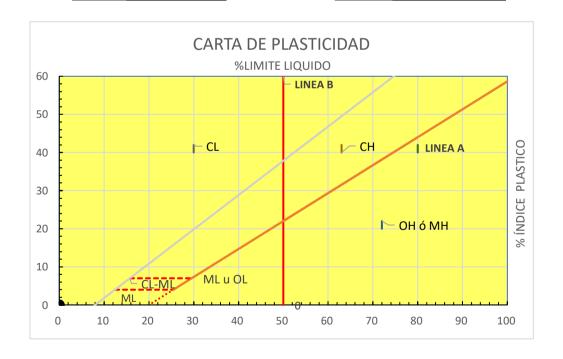
CLASIFICACION DE SUELOS POR EL METODO SUCS Zonificación geotecnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash Proyecto: Distrito Santa, Provincia Santa, Ancash Localización: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas Calicata N° 10 Estrato 02 1.40 - 2.90 m Muestra: Profundidad: Setiembre del 2024 9005582 m S - 762338 m E Fecha: Coordenadas: 1. Porcentaje que pasa la malla N°200: 52.07% %FINOS>50% **SUELO DE PARTICULAS FINAS** 2. Limites de Consistencia: NP %FINOS>50% **SUELO DE PARTICULAS FINAS**

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CC:

CU: NP


NP

LL: NP

IP:

CRITERIO LIMITES ATTERBEG

NP

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE	SUELOS POR	EL METODO AASH1	ГО
Proyecto:	"Zonificación geotécnica con fines de ci 2022"	mentación en la zona urbana	del distrito de Santa, Provincia de Sant	a, Departamento de Ancash -
Localización:	Distrito Santa, Provincia Santa, Ancash			
Tesistas	Montalvan Gonzales Katerinhe Paloma	- Guzmán Vásquez Rogger	Juan	
Muestra:	Calicata N° 10 Estrato	02	Profundidad:	1.40 - 2.90 m
Fecha:	Setiembre del 2024		Coordenadas:	9005582 m S - 762338 m E
1. Porcenta	je que pasa la malla N°200:	52.07%	%FI	NOS>35%
			MATERIALES L	IMOSO ARCILLOSO
2. Lim	nites de Consistencia:	NP		
3. Porcent	aje que pasa la malla N°4:	93.66%		
			•	
CR	ITERIO GRANULOMETRÍA		CRITERIO LIMITES AT	TERBEG
	CU: NP		LL: NP	
	-		-	
	CC: NP		IP: NP	
		· '		
		ÍNDICE DE GRUPO		
	-	0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO			
GRUPO	TIPOLOGÍA	CALIDAD	
A-4	SUELO LIMOSO	POBRE A MALO	

En conclusión es un suelo: A-4(0)

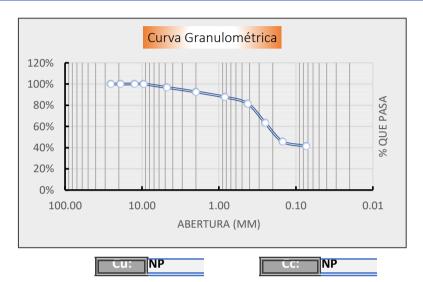
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**


0.00 - 1.80 m Calicata N° 11 Estrato Muestra:

Setiembre del 2024 9005887 m S - 762399 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	363.20

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	11.700	96.78%
N°10	2.000	15.100	92.62%
N°20	0.840	17.800	87.72%
N°40	0.425	22.400	81.55%
N°60	0.250	66.400	63.27%
N°100	0.149	63.500	45.79%
N°200	0.074	15.600	41.49%
> N°200		150.700	0.00%

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO				
PARAMETRO		Ta	ra N°	
PARAIVIETRO	1	2	3	4
1. Numero de golpes				
2. Peso de la tara (gr)				
3. Peso tara + Suelo humedo (gr)	NIC) PRESE	NITA	
4. Peso tara + Suelo seco (gr)	INC) I INESE	INIA	
5. Peso agua (gr)				
6. Peso Suelo seco (gr)				
7. Contenido Humedad (%)				

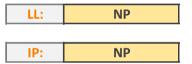
B. LIMITE PLASTICO				
DADAMETRO		Tara N°		
PARAMETRO	1	2	3	
1. Peso de la tara (gr)				
2. Peso tara + Suelo humedo (gr)	110.00	-CENITA		
3. Peso tara + Suelo seco (gr)	NO PR	ESENTA	١	
4. Peso agua (gr)				
5. Peso Suelo seco (gr)				
6. Contenido Humedad (%)				

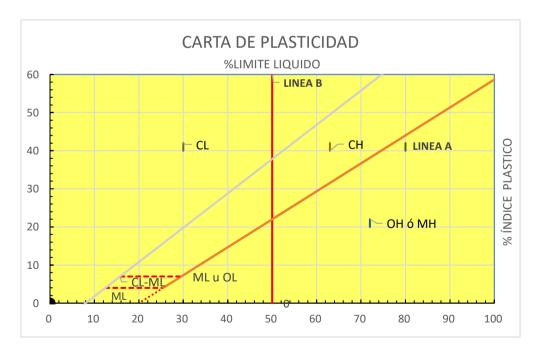
PARAMETROS		Tara N°		
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	27.528	28.451	29.243	
2. Peso tara + Suelo humedo (gr)	105.732	91.219	80.201	0.340/
3. Peso tara + Suelo seco (gr)	99.822	86.435	76.302	8.24%
4. Peso agua (gr)	5.910	4.784	3.899	
5. Peso Suelo seco (gr)	72.294	57.984	47.059	
6. Contenido Humedad (%)	8.17%	8.25%	8.29%	

Grava %	3.22%
Arena %	55.29%
Finos %	41.49%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	8.24%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS


CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -Proyecto: Localización: Distrito Santa, Provincia Santa, Ancash Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas** Muestra: Calicata N° 01 Profundidad: 0.00 - 1.80 m 11 Estrato Setiembre del 2024 9005887 m S - 762399 m E Fecha: Coordenadas: 1. Porcentaje que pasa la malla N°200: 41.49% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 96.78% %ARENA>50% **ARENA**


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU:	NP
CC:	NP

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE	SUELOS POR	EL METODO AASI	НТО
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urban	a del distrito de Santa, Provincia de S	Santa, Departamento de Ancash
Localización:	Distrito Santa, Provincia Santa, Ancas	sh		
Tesistas	Montalvan Gonzales Katerinhe Palom	ıa - Guzmán Vásquez Rogger	· Juan	
Muestra:	Calicata N° 11 Estrato	01	Profundidad:	0.00 - 1.80 m
Fecha:	Setiembre del 2024		Coordenadas:	9005887 m S - 762399 m E
1. Porcenta	je que pasa la malla N°200:	41.49%	%	FINOS>35%
			MATERIALES	LIMOSO ARCILLOSO
2. Porcenta	ije que pasa la malla N°40:	87.72%		
3. Porcenta	ije que pasa la malla N°10:	92.62%		
		_		
CR	ITERIO GRANULOMETRÍA	<u> </u>	CRITERIO LIMITES A	ATTERBEG
	CU: NP	<u> </u>	LL: NP	
		-		
	CC: NP	<u> </u>	IP: NP	
		ÍNDICE DE GRUPO	0	
		0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO			
GRUPO	TIPOLOGÍA	CALIDAD	
A-4	SUELO LIMOSO	POBRE A MALO	

En conclusión es un suelo: A-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

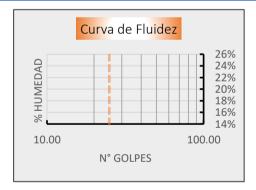
Calicata N° 11 Estrato 1.80 - 2.80 m Muestra:

Setiembre del 2024 9005887 m S - 762399 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	388.60

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	15.400	96.04%
N°10	2.000	26.500	89.22%
N°20	0.840	18.700	84.41%
N°40	0.425	29.800	76.74%
N°60	0.250	66.400	59.65%
N°100	0.149	85.400	37.67%
N°200	0.074	26.400	30.88%
> N°200		120.000	0.00%



2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
DADAMETRO		Ţ	ara N°		
PARAMETRO	1 2 3 4				
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)	NO PRESENTA				
4. Peso tara + Suelo seco (gr)	NO PRESENTA				
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

B. LIMITE PLASTICO						
DADAMETRO		Tara N°				
PARAMETRO	1	2	3			
1. Peso de la tara (gr)						
2. Peso tara + Suelo humedo (gr)						
3. Peso tara + Suelo seco (gr)	NO PR	NO PRESENTA				
4. Peso agua (gr)						
5. Peso Suelo seco (gr)						
6. Contenido Humedad (%)						

PARAMETROS	Tara N°			
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.692	30.208	28.224	
2. Peso tara + Suelo humedo (gr)	82.090	76.303	109.819	8.13%
3. Peso tara + Suelo seco (gr)	77.995	72.975	103.558	8.13%
4. Peso agua (gr)	4.095	3.328	6.261	
5. Peso Suelo seco (gr)	49.303	42.767	75.334	
6. Contenido Humedad (%)	8.31%	7.78%	8.31%	

Grava %	3.96%
Arena %	65.16%
Finos %	30.88%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	8.13%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-2-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

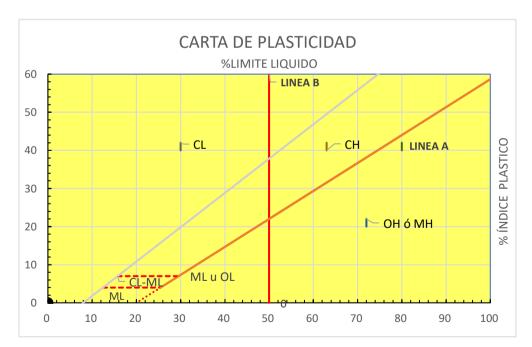
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -2022" Proyecto: Localización: Distrito Santa, Provincia Santa, Ancash Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas Muestra: Calicata N° 02 Profundidad: 1.80 - 2.80 m 11 **Estrato** Fecha: Setiembre del 2024 Coordenadas: 9005887 m S - 762399 m E 1. Porcentaje que pasa la malla N°200: 30.88% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 96.04% %ARENA>50%

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA


CU: NP

CC: NP

CRITERIO LIMITES ATTERBEG

ARENA

IP: NP

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE S	SUELOS POR E	L METODO AASH	ГО
Proyecto:	"Zonificación geotécnica con fines de ci 2022"	mentación en la zona urbana c	lel distrito de Santa, Provincia de Sar	nta, Departamento de Ancash
Localización: Tesistas	Distrito Santa, Provincia Santa, Ancash Montalvan Gonzales Katerinhe Paloma		an	
Muestra:	Calicata N° 11 Estrato		Profundidad:	1.80 - 2.80 m
Fecha:	Setiembre del 2024		Coordenadas:	9005887 m S - 762399 m E
1. Porcenta	je que pasa la malla N°200:	30.88%	%FIN	IOS<=35%
2. Porcenta	aje que pasa la malla N°40:	84.41%	MATERIALE	S GRANULARES
3. Porcenta	aje que pasa la malla N°10:	89.22%	1	
			-	
CR	RITERIO GRANULOMETRÍA		CRITERIO LIMITES A	TTERBEG
	CU: NP]	LL: NP	
	CC: NP]	IP: NP	
		ÍNDICE DE GRUPO		
		0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES					
GRUPO	TIPOLOGÍA	CALIDAD			
A-2-4	EXCELENTE A				
A-2-4	SUELO LIMOSO	BUENO			

En conclusión es un suelo: A-2-4(0)

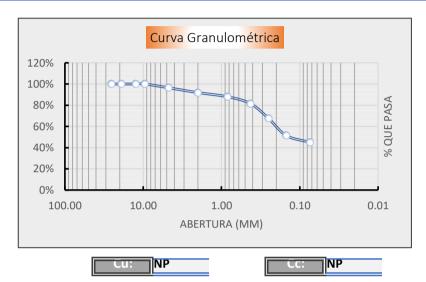
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**


0.00 - 1.70 m Calicata N° 12 Estrato Muestra: Setiembre del 2024

9005938 m S - 762143 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	410.00

			•
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	14.400	96.49%
N°10	2.000	18.900	91.88%
N°20	0.840	15.700	88.05%
N°40	0.425	26.900	81.49%
N°60	0.250	57.400	67.49%
N°100	0.149	65.800	51.44%
N°200	0.074	26.400	45.00%
> N°200		184.500	0.00%

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
DADAMETRO			Ta	ara N°	
PARAMETRO	1 2 3 4			4	
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)	NO PRESENTA				
4. Peso tara + Suelo seco (gr)		140) I INESE	-1117	
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

B. LIMITE PLASTICO				
DADAMETRO		Tara N°	1	
PARAMETRO	1	2	3	
1. Peso de la tara (gr)				
2. Peso tara + Suelo humedo (gr)				
3. Peso tara + Suelo seco (gr)	NO PRESENTA			
4. Peso agua (gr)				
5. Peso Suelo seco (gr)				
6. Contenido Humedad (%)				

PARAMETROS				
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	29.094	28.057	28.927	
2. Peso tara + Suelo humedo (gr)	93.826	93.977	73.798	8.60%
3. Peso tara + Suelo seco (gr)	88.639	88.621	70.381	8.00%
4. Peso agua (gr)	5.187	5.356	3.417	
5. Peso Suelo seco (gr)	59.545	60.564	41.454	
6. Contenido Humedad (%)	8.71%	8.84%	8.24%	

Grava %	3.51%
Arena %	51.49%
Finos %	45.00%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	8.60%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

 Muestra:
 Calicata N°
 12
 Estrato
 01
 Profundidad:
 0.00 - 1.70 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 9005938 m S - 762143 m E

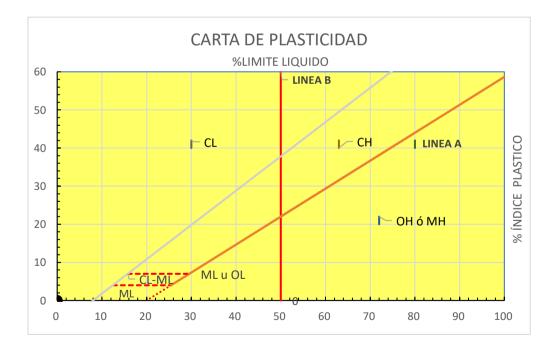
1. Porcentaje que pasa la malla N°200: 45.00%

2. Porcentaje que pasa la malla N°4: 96.49%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS

%ARENA>50%

ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

IP: NP

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE				
Proyecto:	"Zonificación geotécnica con fines de 2022"	e cimentación en la zona urba	ina dei distrito de	e Santa, Provincia de Santa	, Departamento de Ancasn
Localización:	Distrito Santa, Provincia Santa, Anca				
Tesistas Muestra:	Montalvan Gonzales Katerinhe Palor Calicata N° 12 Estrato	ma - Guzmán Vásquez Rogg	er Juan	Profundidad:	0.00 - 1.70 m
Fecha:	Setiembre del 2024			Coordenadas:	9005938 m S - 762143 m E
recha.	Getterniste del 2024			ooor demadas.	9003930 III 3 - 702 143 III E
1. Porcenta	aje que pasa la malla N°200:	45.00%			IOS>35%
2. Porcent	aje que pasa la malla N°40:	88.05%]	MATERIALES LI	MOSO ARCILLOSO
3. Porcent	aje que pasa la malla N°10:	91.88%]		
CI	RITERIO GRANULOMETRÍA]	CRIT	ERIO LIMITES ATT	ERBEG
	CU: NP]	LL:	NP	
	CC: NP	1	IP:	NP	_
	CC. NP	J	IP.	NP	
		ÍNDICE DE GRUF	0		
		0			

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO			
GRUPO	TIPOLOGÍA	CALIDAD	
A-4	SUELO LIMOSO	POBRE A MALO	

En conclusión es un suelo: A-4(0)

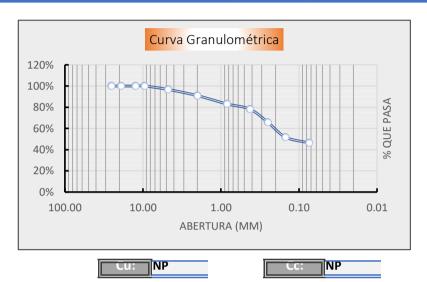
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**


Calicata N° 12 Estrato 1.70 - 2.90 m Muestra:

Setiembre del 2024 9005938 m S - 762143 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	453.70

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	14.700	96.76%
N°10	2.000	26.500	90.92%
N°20	0.840	35.400	83.12%
N°40	0.425	22.400	78.18%
N°60	0.250	56.400	65.75%
N°100	0.149	63.500	51.75%
N°200	0.074	24.400	46.37%
> N°200		210.400	0.00%

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO						
PARAMETRO			Tar	a N°		
PANAIVIETRO	1		2	3	4	
1. Numero de golpes						
2. Peso de la tara (gr)	_					
3. Peso tara + Suelo humedo (gr)	NO PRESENTA					
4. Peso tara + Suelo seco (gr)	NO PRESENTA					
5. Peso agua (gr)						
6. Peso Suelo seco (gr)						
7. Carataritala III						

5. Peso agua (gr) 6. Peso Suelo seco (gr) 7. Contenido Humedad (%)					
B. LIM	IITE PLAST	ICO .			
DADAMETRO	Tara N°				
PARAMETRO	1	2	3		
1. Peso de la tara (gr)					
2. Peso tara + Suelo humedo (gr)					
3. Peso tara + Suelo seco (gr)	NO PRESENTA				

B. LIIVITE PLASTICO				
1	2	3		
NO PRESENTA				
	1	Tara N°	Tara N° 1 2 3	

PARAMETROS				
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	28.777	28.217	28.695	
2. Peso tara + Suelo humedo (gr)	94.306	101.608	89.557	4.26%
3. Peso tara + Suelo seco (gr)	91.875	98.508	86.931	4.20%
4. Peso agua (gr)	2.431	3.100	2.626	
5. Peso Suelo seco (gr)	63.098	70.291	58.236	
6. Contenido Humedad (%)	3.85%	4.41%	4.51%	

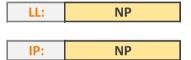
	Curva de Fluidez	
% нимерар		26% 24% 22% 20% 18% 16% 14%
10.00		100.00
	N° GOLPES	

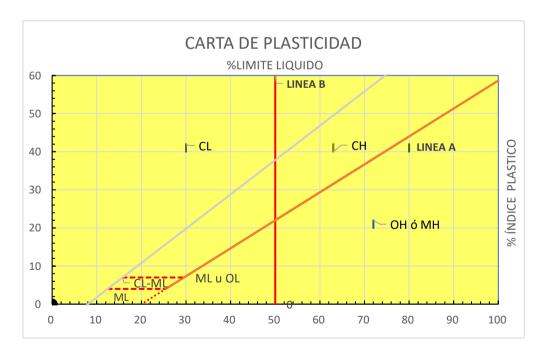
Grava %	3.24%
Arena %	50.39%
Finos %	46.37%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	4.26%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS


CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -2022" Provecto: Localización: Distrito Santa, Provincia Santa, Ancash Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata N° Muestra: Profundidad: 1.70 - 2.90 m 12 Estrato 02 Setiembre del 2024 9005938 m S - 762143 m E Fecha: Coordenadas: 1. Porcentaje que pasa la malla N°200: 46.37% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 96.76% %ARENA>50% **ARENA**


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU:	NP
CC:	NP

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACION DE	SUELOS POF	R EL METODO AASH	ТО
	•	cimentación en la zona urba	ana del distrito de Santa, Provincia de Sa	nta, Departamento de Ancash -
Proyecto:	2022"			
Localización:	Distrito Santa, Provincia Santa, Ancas	sh		
Tesistas	Montalvan Gonzales Katerinhe Palom	a - Guzmán Vásquez Rogg	er Juan	
Muestra:	Calicata N° 12 Estrato	02	Profundidad:	1.70 - 2.90 m
Fecha:	Setiembre del 2024		Coordenadas:	9005938 m S - 762143 m E
		•		
1. Porcenta	je que pasa la malla N°200:	46.37%	%F	INOS>35%
			MATERIALES	IMOSO ARCILLOSO
2. Porcenta	aje que pasa la malla N°40:	83.12%	1	
3. Porcenta	aje que pasa la malla N°10:	90.92%	1	
			4	
CR	RITERIO GRANULOMETRÍA	1	CRITERIO LIMITES AT	TERBEG
		-		,
	CU: NP		LL: NP	
	CC: NP		IP: NP	
		-		
		ÍNDICE DE GRUI	20	
		0		
			■	

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO			
GRUPO	TIPOLOGÍA	CALIDAD	
A-4	SUELO LIMOSO	POBRE A MALO	

En conclusión es un suelo: A-4(0)

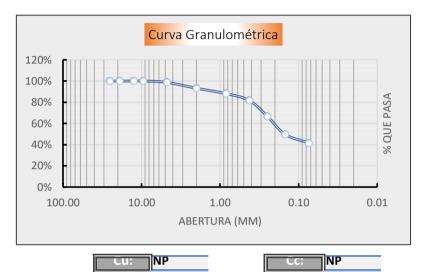
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**


0.00 - 1.80 m Calicata N° 13 Estrato Muestra:

Setiembre del 2024 9005686 m S - 762043 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	444.10

-			•
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	5.700	98.72%
N°10	2.000	24.500	93.20%
N°20	0.840	22.600	88.11%
N°40	0.425	28.700	81.65%
N°60	0.250	66.400	66.70%
N°100	0.149	75.400	49.72%
N°200	0.074	36.400	41.52%
> N°200		184.400	0.00%

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO				
PARAMETRO	Tara N°			
PARAIVIETRO	1	2	3	4
1. Numero de golpes				
2. Peso de la tara (gr)				
3. Peso tara + Suelo humedo (gr)	N	O PRESE	NITA	
4. Peso tara + Suelo seco (gr)	I IV	O FILLSE	INIA	
5. Peso agua (gr)				
6. Peso Suelo seco (gr)				
7. Contenido Humedad (%)				

B. LIMITE PLASTICO				
PARAMETRO		Tara N°		
PARAIVIETRO	1	2	3	
1. Peso de la tara (gr)				
2. Peso tara + Suelo humedo (gr)	110.00			
3. Peso tara + Suelo seco (gr)	NO PR	RESENTA	۱	
4. Peso agua (gr)				
5. Peso Suelo seco (gr)				
6. Contenido Humedad (%)				

PARAMETROS	Tara N°			
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	29.515	28.704	29.256	
2. Peso tara + Suelo humedo (gr)	81.559	83.356	78.953	12 210/
3. Peso tara + Suelo seco (gr)	75.748	76.812	72.939	13.31%
4. Peso agua (gr)	5.811	6.544	6.014	
5. Peso Suelo seco (gr)	46.233	48.108	43.683	
6. Contenido Humedad (%)	12.57%	13.60%	13.77%	

Grava %	1.28%
Arena %	57.19%
Finos %	41.52%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	13.31%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

0.00 - 1.80 m

CLASIFICACION DE SUELOS POR EL METODO SUCS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash - 2022"

Proyecto: 2022

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Muestra: Calicata N° 13 Estrato 01 Profundidad:

Fecha: Setiembre del 2024 Coordenadas: 9005686 m S - 762043 m E

1. Porcentaje que pasa la malla N°200: 41.52%

2. Porcentaje que pasa la malla N°4: 98.72%

%FINOS<50%

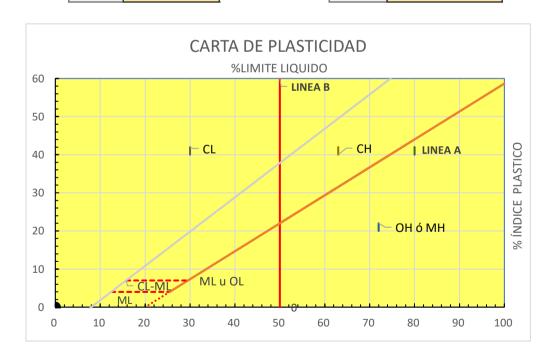
SUELO DE PARTICULAS GRUESAS

%ARENA>50%

ARENA

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA


CU: NP

CC: NP

CRITERIO LIMITES ATTERBEG

LL: NP

IP: NP

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -2022" Proyecto: Distrito Santa, Provincia Santa, Ancash Localización: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas** Calicata N° 13 Muestra: Estrato 01 Profundidad: 0.00 - 1.80 m Setiembre del 2024 Fecha: Coordenadas: 9005686 m S - 762043 m E 1. Porcentaje que pasa la malla N°200: 41.52% %FINOS>35% MATERIALES LIMOSO ARCILLOSO 2. Porcentaje que pasa la malla N°40: 88.11% 93.20% 3. Porcentaje que pasa la malla N°10:

CRITERIO GRANULOMETRÍA CU: NP LL: NP CC: NP IP: NP ÍNDICE DE GRUPO

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO			
GRUPO	TIPOLOGÍA	CALIDAD	
A-4	SUELO LIMOSO	POBRE A MALO	

En conclusión es un suelo: A-4(0)

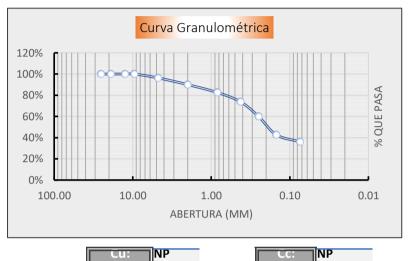
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

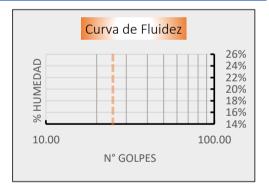

 Muestra:
 Calicata N°
 13
 Estrato
 02
 Profundidad:
 1.80 - 2.80 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 9005686 m S - 762043 m E

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	402.00
Peso final de la muestra (g)	401.90

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	14.700	96.34%
N°10	2.000	25.400	90.02%
N°20	0.840	29.800	82.61%
N°40	0.425	35.400	73.80%
N°60	0.250	55.400	60.01%
N°100	0.149	69.700	42.67%
N°200	0.074	26.400	36.10%
> N°200		145.100	0.00%



2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
PARAMETRO	Tara N°				
PARAIVIETRO	1	2	3	4	
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)	NO PRESENTA				
4. Peso tara + Suelo seco (gr)	NO PRESENTA				
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

B. LIMITE PLASTICO					
DARAMETRO	Tara N°				
PARAMETRO	1 2 3				
1. Peso de la tara (gr)					
2. Peso tara + Suelo humedo (gr)					
3. Peso tara + Suelo seco (gr)	NO PRESENTA				
4. Peso agua (gr)					
5. Peso Suelo seco (gr)					
6. Contenido Humedad (%)					

PARAMETROS				
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	30.141	29.458	29.458	
2. Peso tara + Suelo humedo (gr)	81.547	83.356	78.845	16.19%
3. Peso tara + Suelo seco (gr)	74.412	75.845	71.939	10.19%
4. Peso agua (gr)	7.135	7.511	6.906	
5. Peso Suelo seco (gr)	44.271	46.387	42.481	
6. Contenido Humedad (%)	16.12%	16.19%	16.26%	

Grava %	3.66%
Arena %	60.24%
Finos %	36.10%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	16.19%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -2022" Proyecto: Localización: Distrito Santa, Provincia Santa, Ancash Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas Calicata N° Muestra: 02 Profundidad: 13 **Estrato** 180 - 280 m Setiembre del 2024 9005686 m S - 762043 m E Fecha: Coordenadas: 1. Porcentaje que pasa la malla N°200: 36.10% %FINOS<50%

2. Porcentaje que pasa la malla N°4: 96.34%

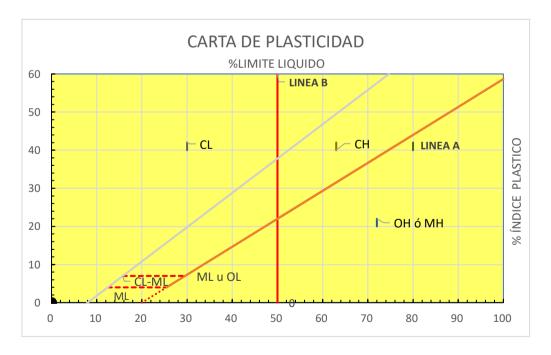
SUELO DE PARTICULAS GRUESAS

%ARENA>50%

ARENA

%FINOS>12%

CRITERIO PARA CLASIFICACIÓN:


CRITERIO GRANULOMETRÍA

CU: NP

CC: NP

CRITERIO LIMITES ATTERBEG

IP: NP

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

	CLASIFICACI	ON DE	SUELOS POR E	EL METODO AASHT	0
Provests	"Zonificación geotécnica o 2022"	con fines de ci	mentación en la zona urbana d	lel distrito de Santa, Provincia de Santa,	Departamento de Ancash -
Proyecto:					
Localización:	Distrito Santa, Provincia Santa, Ancash				
Tesistas			- Guzmán Vásquez Rogger Ju		
Muestra:	Calicata N° 13	Estrato	02	Profundidad:	1.80 - 2.80 m
Fecha:	Setiembre del 2024			Coordenadas:	9005686 m S - 762043 m E
1. Porcenta	ije que pasa la malla N	°200:	36.10%		NOS>35%
				MATERIALES LI	MOSO ARCILLOSO
2. Porcent	aje que pasa la malla N	l°40:	82.61%		
				-	
3. Porcenta	aje que pasa la malla N	l°10:	90.02%		
				=	
			_		
CF	RITERIO GRANULOME	TRÍA		CRITERIO LIMITES AT	TERBEG
-			-		
	CU:	NP]	LL: NP	
			•		
	CC:	NP	1	IP: NP	
			•		
			ÍNDICE DE GRUPO		
			0		
				J	

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO				
GRUPO	TIPOLOGÍA	CALIDAD		
A-4	SUELO LIMOSO	POBRE A MALO		

En conclusión es un suelo: A-4(0)

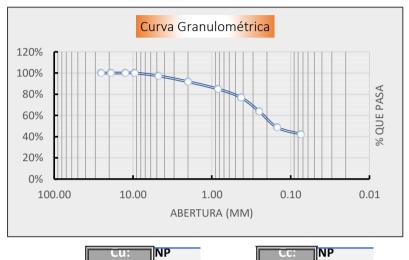
FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

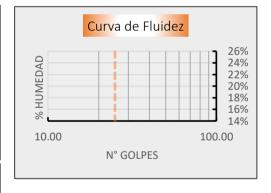

0.00 - 1.10 m Calicata N° 14 Estrato 01 Muestra:

Setiembre del 2024 9005236 m S - 761999 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	437.50
Peso final de la muestra (g)	437.10

			1
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	11.700	97.32%
N°10	2.000	24.100	91.81%
N°20	0.840	29.800	84.99%
N°40	0.425	35.700	76.82%
N°60	0.250	56.900	63.81%
N°100	0.149	65.700	48.78%
N°200	0.074	28.700	42.21%
> N°200		184.500	0.00%



NP

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
PARAMETRO	Tara N°				
PARAIVIETRO	1 2 3				
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)	NO PRESENTA				
4. Peso tara + Suelo seco (gr)	NO PRESENTA				
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

, ,						
B. LIMITE PLASTICO						
PARAMETRO	Tara N° 1 2 3					
1. Peso de la tara (gr)						
2. Peso tara + Suelo humedo (gr)	NO PRESENTA					
3. Peso tara + Suelo seco (gr)	NO PRESENTA					
4. Peso agua (gr)						
5. Peso Suelo seco (gr)						
6. Contenido Humedad (%)						

2.68%

0.00

Arena %	55.11%
Finos %	42.21%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	9.40%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672

Grava %

Índice de Grupo

3. CONTENIDO DE HUMEDAD (NTP 339.127)

PARAMETROS				
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	28.438	28.943	30.352	
2. Peso tara + Suelo humedo (gr)	112.897	82.953	109.927	9.40%
3. Peso tara + Suelo seco (gr)	105.364	79.000	102.354	9.40%
4. Peso agua (gr)	7.533	3.953	7.573	
5. Peso Suelo seco (gr)	76.926	50.057	72.002	
6. Contenido Humedad (%)	9.79%	7.90%	10.52%	

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Muestra: Calicata N° 14 Estrato 01 Profundidad: 0.00 - 1.10 m

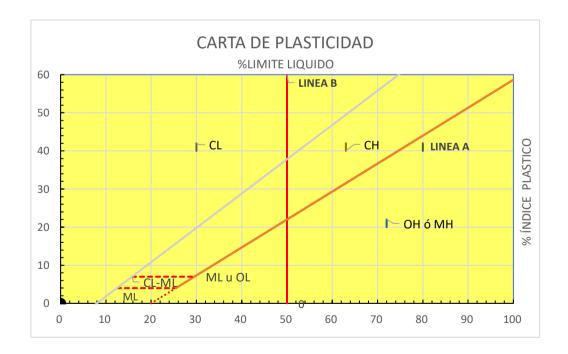
Fecha: Setiembre del 2024 Coordenadas: 9005236 m S - 761999 m E

1. Porcentaje que pasa la malla N°200: 42.21%

2. Porcentaje que pasa la malla N°4: 97.32%

%FINOS<50%
SUELO DE PARTICULAS GRUESAS
%ARENA>50%

ARENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CU: NP

CRITERIO LIMITES ATTERBEG

IP: NP

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE	SUELOS POR	EL METODO AASHT	0
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urbana	a del distrito de Santa, Provincia de Santa	a, Departamento de Ancash
Localización:	Distrito Santa, Provincia Santa, Anca	sh		
Tesistas	Montalvan Gonzales Katerinhe Palon	na - Guzmán Vásquez Rogger	Juan	
Muestra:	Calicata N° 14 Estrato	01	Profundidad:	0.00 - 1.10 m
Fecha:	Setiembre del 2024		Coordenadas:	9005236 m S - 761999 m E
1. Porcenta	ije que pasa la malla N°200:	42.21%	%F	INOS>35%
			MATERIALES L	IMOSO ARCILLOSO
2. Porcent	aje que pasa la malla N°40:	84.99%		
3. Porcent	aje que pasa la malla N°10:	91.81%		
CF	RITERIO GRANULOMETRÍA		CRITERIO LIMITES A	TTERBEG
<u> </u>				
	CU: NP		LL: NP	
		_		
	CC: NP		IP: NP	
		_		
		ÍNDICE DE GRUP	0	
		0		
			<u> </u>	

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO			
GRUPO TIPOLOGÍA CALIDAD			
A-4	SUELO LIMOSO	POBRE A MALO	

En conclusión es un suelo: A-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -

Proyecto: 2022

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

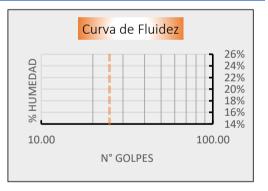
Muestra: Calicata N° 14 Estrato 02 Profundidad: 1.10 - 1.80 m

Fecha: Setiembre del 2024 Coordenadas: 9005236 m S - 761999 m E

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	243.00
Peso final de la muestra (g)	242.50

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.000	100.00%
N°10	2.000	5.300	97.81%
N°20	0.840	12.400	92.70%
N°40	0.425	30.400	80.16%
N°60	0.250	74.500	49.44%
N°100	0.149	89.500	12.54%
N°200	0.074	25.600	1.98%
> N°200		4.800	0.00%


2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO				
PARAMETRO	Tara N°			
PARAIVIETRO	1 2 3			4
1. Numero de golpes				
2. Peso de la tara (gr)				
3. Peso tara + Suelo humedo (gr))			
4. Peso tara + Suelo seco (gr)	NO PRESENTA			
5. Peso agua (gr)				
6. Peso Suelo seco (gr)				
7. Contenido Humedad (%)				

3. CONTENIDO DE HUMEDAD (NTP 339.127)

PARAMETROS		Tara N°		
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	28.963	29.641	29.758	
2. Peso tara + Suelo humedo (gr)	101.034	96.800	108.475	1 760/
3. Peso tara + Suelo seco (gr)	99.756	95.735	107.039	1.76%
4. Peso agua (gr)	1.278	1.065	1.436	
5. Peso Suelo seco (gr)	70.793	66.094	77.281	
6. Contenido Humedad (%)	1.81%	1.61%	1.86%	

Grava %	0.00%
Arena %	98.02%
Finos %	1.98%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	1.76%
Clasificacion SUCS	SP
Clasificacion AAHSTO	A-3
Indice de Grupo	0.00

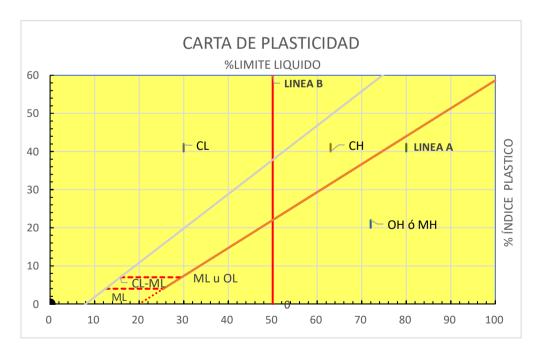
FACULTAD DE INGENIERÍA

LABORATORIO DE MECÁNICA DE SUELOS

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -2022" Provecto: Localización: Distrito Santa, Provincia Santa, Ancash Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata N° Muestra: 02 Profundidad: 1.10 - 1.80 m **Estrato** Setiembre del 2024 9005236 m S - 761999 m E Fecha: Coordenadas: %FINOS<50% 1. Porcentaje que pasa la malla N°200: 1.98% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 100.00% %ARENA>50% **ARENA**


CRITERIO GRANULOMETRÍA

CU: 2.29

CC: 1.02

CRITERIO LIMITES ATTERBEG

LL: NP IP: NP

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - AASHTO

CLASIFICACION DE SUELOS POR EL METODO AASHTO				
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urban	a del distrito de Santa, Provincia de San	ta, Departamento de Ancash -
Localización:	Distrito Santa, Provincia Santa, Ancas	sh		
Tesistas	Montalvan Gonzales Katerinhe Palom	na - Guzmán Vásquez Rogge	Juan	
Muestra:	Calicata N° 14 Estrato	02	Profundidad:	1.10 - 1.80 m
Fecha:	Setiembre del 2024		Coordenadas:	9005236 m S - 761999 m E
1. Porcenta	aje que pasa la malla N°200:	1.98%	%FIN	NOS<=35%
			MATERIALE	S GRANULARES
2. Porcent	aje que pasa la malla N°40:	92.70%		
			_	
3. Porcent	aje que pasa la malla N°10:	97.81%		
			_	
CF	RITERIO GRANULOMETRÍA		CRITERIO LIMITES AT	TERBEG
		_		_
	CU: 2.29		LL: NP	
		_		
	CC: 1.02		IP: NP	
		ÍNDICE DE GRUP	0	
		0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES			
GRUPO	TIPOLOGÍA	CALIDAD	
A-3		EXCELENTE O	
A-5	ARENA FINA	BUENO	

En conclusión es un suelo: A-3(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

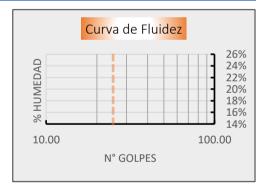
1.80 - 2.60 m Calicata N° 14 Estrato 03 Muestra: Setiembre del 2024 9005236 m S - 761999 m E Fecha:

Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	451.10

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	17.400	96.14%
N°10	2.000	26.900	90.18%
N°20	0.840	32.400	83.00%
N°40	0.425	38.700	74.42%
N°60	0.250	56.900	61.80%
N°100	0.149	74.500	45.29%
N°200	0.074	27.800	39.13%
> N°200		176.500	0.00%


2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO				
PARAMETRO		Ta	ara N°	
PARAIVIETRO	1 2 3 4			4
1. Numero de golpes				
2. Peso de la tara (gr)				
3. Peso tara + Suelo humedo (gr)	NO PRESENTA			
4. Peso tara + Suelo seco (gr)				
5. Peso agua (gr)				
6. Peso Suelo seco (gr)				
7. Contenido Humedad (%)				

·- · · · · · · · · · · · · · · · · ·				
B. LIMITE PLASTICO				
PARAMETRO	Tara N° 1 2 3			
1. Peso de la tara (gr)				
2. Peso tara + Suelo humedo (gr)	NO PRECENTA			
3. Peso tara + Suelo seco (gr)	NO PRESENTA			
4. Peso agua (gr)				
5. Peso Suelo seco (gr)				
6. Contenido Humedad (%)				

3. CONTENIDO DE HUMEDAD (NTP 339.127)

PARAMETROS				
PARAIVIETROS	1	2	3	
1. Peso de la tara (gr)	29.724	28.970	29.783	
2. Peso tara + Suelo humedo (gr)	104.327	116.677	105.189	16.16%
3. Peso tara + Suelo seco (gr)	94.130	104.932	94.136	10.10%
4. Peso agua (gr)	10.197	11.745	11.053	
5. Peso Suelo seco (gr)	64.406	75.962	64.353	
6. Contenido Humedad (%)	15.83%	15.46%	17.18%	

Grava %	3.86%
Arena %	57.02%
Finos %	39.13%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	16.16%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash 2022" Provecto: Localización: Distrito Santa, Provincia Santa, Ancash **Tesistas** Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata N° 03 Profundidad: 1.80 - 2.60 m Muestra: 14 **Estrato** Setiembre del 2024 9005236 m S - 761999 m E Fecha: Coordenadas: 1. Porcentaje que pasa la malla N°200: 39.13% %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 96.14% %ARENA>50% 2. Porcentaje que pasa la malla N°4: **ARENA**

CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

IP: NP

UNS UNIVERSIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE	SUELOS POR E	L METODO AASHT	0
Proyecto:	"Zonificación geotécnica con fines de c 2022"	imentación en la zona urbana de	el distrito de Santa, Provincia de Santa,	Departamento de Ancash -
Localización:	Distrito Santa, Provincia Santa, Ancash			
Tesistas	Montalvan Gonzales Katerinhe Paloma		an	
Muestra:	Calicata N° 14 Estrato	03	Profundidad:	1.80 - 2.60 m
Fecha:	Setiembre del 2024	_	Coordenadas:	9005236 m S - 761999 m E
1. Porcenta	je que pasa la malla N°200:	39.13%		NOS>35%
		02.000/	MATERIALES LII	MOSO ARCILLOSO
2. Porcent	aje que pasa la malla N°40:	83.00%		
3. Porcenta	aje que pasa la malla N°10:	90.18%	1	
	.,o que pasa la mana la 201	30.2070	1	
CF	RITERIO GRANULOMETRÍA		CRITERIO LIMITES AT	TTERBEG
		=		
	CU: NP		LL: NP	
		-		_
	CC: NP		IP: NP	
		(n.p., p.		
		ÍNDICE DE GRUPO		
		0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

	MATERIALES LIMOSO ARCILLOSO	
GRUPO	TIPOLOGÍA	CALIDAD
A-4	SUELO LIMOSO	POBRE A MALO

En conclusión es un suelo: A-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

Calicata N° 15 Estrato 0.00 - 1.20 m Muestra:

Setiembre del 2024 9004820 m S - 762010 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	
Peso final de la muestra (g)	460.30

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	17.800	96.13%
N°10	2.000	27.400	90.18%
N°20	0.840	32.400	83.14%
N°40	0.425	42.500	73.91%
N°60	0.250	59.600	60.96%
N°100	0.149	72.400	45.23%
N°200	0.074	29.800	38.76%
> N°200		178.400	0.00%

2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
PARAMETRO		Т	ara N°		
PARAIVIETRO	1	4			
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)	NO PRESENTA				
4. Peso tara + Suelo seco (gr)	INC	/ I INLULI	NIA.		
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

B. LIMITE PLASTICO					
PARAMETRO	Tara N° 1 2 3				
 Peso de la tara (gr) Peso tara + Suelo humedo (gr) Peso tara + Suelo seco (gr) Peso agua (gr) Peso Suelo seco (gr) Contenido Humedad (%) 	NO PRESENTA				

3. CONTENIDO DE HUMEDAD (NTP 339.127)

PARAMETROS				
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	30.331	28.240	28.926	
2. Peso tara + Suelo humedo (gr)	84.380	98.416	118.337	10 249/
3. Peso tara + Suelo seco (gr)	79.095	91.949	110.177	10.34%
4. Peso agua (gr)	5.285	6.467	8.160	
5. Peso Suelo seco (gr)	48.764	63.709	81.251	
6. Contenido Humedad (%)	10.84%	10.15%	10.04%	

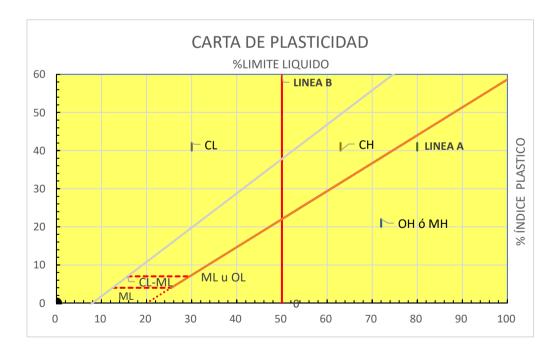
	<mark>Curv</mark> a de Fl <mark>uidez</mark>	2
% HUMEDAD		26% 24% 22% 20% 18% 16%
10.00	_	100.00
	N° GOLPES	

Grava %	3.87%
Arena %	57.38%
Finos %	38.76%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	10.34%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

	CLASIFICACION D	E SUELOS POR E	L METODO SUCS	
Proyecto:	"Zonificación geotécnica con fines de o 2022"	cimentación en la zona urbana del d	distrito de Santa, Provincia de Santa	a, Departamento de Ancash -
Localización:	Distrito Santa, Provincia Santa, Ancas	h		
Tesistas	Montalvan Gonzales Katerinhe Paloma	a - Guzmán Vásquez Rogger Juan		
Muestra:	Calicata N° 15 Estrato	01	Profundidad:	0.00 - 1.20 m
Fecha:	Setiembre del 2024		Coordenadas:	9004820 m S - 762010 m E
1. Porcenta	je que pasa la malla N°200:	38.76%		NOS<50%
			SUELO DE PAR	TICULAS GRUESAS
2. Porcent	aje que pasa la malla N°4:	96.13%	%AF	RENA>50%
			AF	RENA


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

IP: NP

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE	SUELOS POR E	L METOD	O AASHTO	
Proyecto:	"Zonificación geotécnica con fines de 2022"	cimentación en la zona urbana de	el distrito de Santa,	Provincia de Santa, D	Pepartamento de Ancash
Localización:	Distrito Santa, Provincia Santa, Ancas	 sh			
Tesistas	Montalvan Gonzales Katerinhe Palom	ia - Guzmán Vásquez Rogger Jua	an		
Muestra:	Calicata N° 15 Estrato	01	Prof	undidad:	0.00 - 1.20 m
Fecha:	Setiembre del 2024		Coor	rdenadas:	9004820 m S - 762010 m E
		_			
			•		
1. Porcenta	je que pasa la malla N°200:	38.76%			OS>35%
			MA	ATERIALES LIM	OSO ARCILLOSO
2. Porcenta	aje que pasa la malla N°40:	83.14%			
		22.121	1		
3. Porcenta	aje que pasa la malla N°10:	90.18%			
CD	UTERIO CRANUII ONAETRÍA	1	CDITEDIA	O LINAUTEC ATT	EDDEC
CR	RITERIO GRANULOMETRÍA		CRITERIO	O LIMITES ATT	EKBEG
	CU: NP		LL:	NP	
	CO. NP		LL:	INP	_
	CC: NP		IP:	NP	
	CC. 141			141	_
		ÍNDICE DE GRUPO			
		0			
		•			

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO		
GRUPO	TIPOLOGÍA	CALIDAD
A-4	SUELO LIMOSO	POBRE A MALO

En conclusión es un suelo: A-4(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto:

Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan **Tesistas**

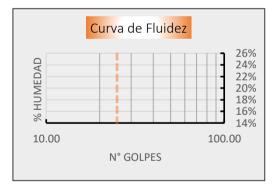
Calicata N° 15 Estrato Muestra: 02 Profundidad: 1.20 - 1.90 m

Setiembre del 2024 9004820 m S - 762010 m E Fecha: Coordenadas:

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	278.00
Peso final de la muestra (g)	277.60

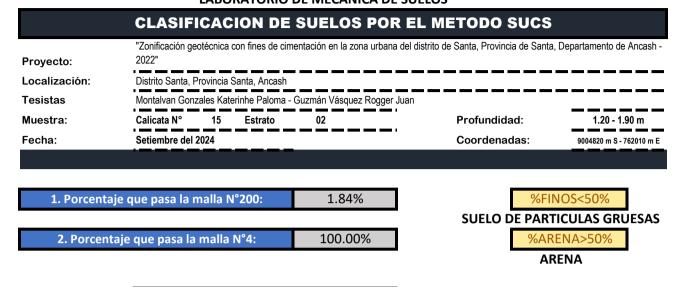
MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	0.000	100.00%
N°10	2.000	6.400	97.69%
N°20	0.840	15.700	92.04%
N°40	0.425	39.700	77.74%
N°60	0.250	84.500	47.30%
N°100	0.149	99.800	11.35%
N°200	0.074	26.400	1.84%
> N°200		5.100	0.00%


2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO					
PARAMETRO		Tara	a N°		
PARAIVIETRO	1	2	3	4	
1. Numero de golpes					
2. Peso de la tara (gr)					
3. Peso tara + Suelo humedo (gr)	nedo (gr)				
4. Peso tara + Suelo seco (gr)	NO PRESENTA				
5. Peso agua (gr)					
6. Peso Suelo seco (gr)					
7. Contenido Humedad (%)					

3. CONTENIDO DE HUMEDAD (NTP 339.127)

PARAMETROS				
PARAIVIETRO3	1	2	3	
1. Peso de la tara (gr)	29.016	30.474	29.368	
2. Peso tara + Suelo humedo (gr)	100.662	104.741	108.870	1 000/
3. Peso tara + Suelo seco (gr)	99.274	103.329	107.359	1.95%
4. Peso agua (gr)	1.388	1.412	1.511	
5. Peso Suelo seco (gr)	70.258	72.855	77.991	
6. Contenido Humedad (%)	1.98%	1.94%	1.94%	



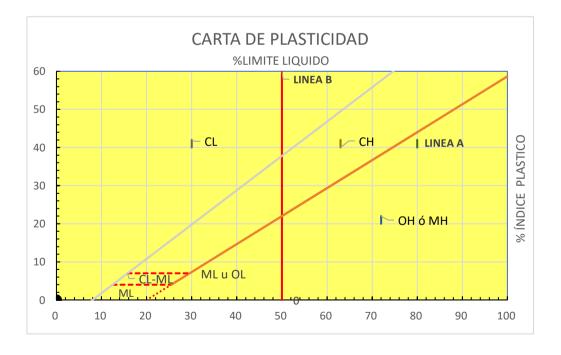
Grava %	0.00%
Arena %	98.16%
Finos %	1.84%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	1.95%
Clasificacion SUCS	SP
Clasificacion AAHSTO	A-3
Indice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CRITERIO PARA CLASIFICACIÓN: %FINOS<5%

CRITERIO GRANULOMETRÍA


CRITERIO LIMITES ATTERBEG

CU: 2.32

LL: NP

CC: 0.99

IP: NP

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFIC	CACION DE S	SUELOS POR	EL MET	ODO AASHTO	
Danisatas	"Zonificación ge 2022"	eotécnica con fines de cir	mentación en la zona urbar	na del distrito de	Santa, Provincia de Santa,	Departamento de Ancash
Proyecto:						
Localización:		Provincia Santa, Ancash		. — — — —		
Tesistas			- Guzmán Vásquez Rogge			
Muestra:	Calicata N°	15 Estrato	02		Profundidad:	1.20 - 1.90 m
Fecha:	Setiembre del	2024			Coordenadas:	9004820 m S - 762010 m E
1 Percents	aje que pasa la r	malla N°200:	1.84%		%EIN	OS<=35%
1. Porcenta	aje que pasa la i	IIdiid IV 200.	1.04/0			GRANULARES
2 Porcent	aje que pasa la	malla N°40:	92.04%	1	WATERIALES	GNANULANLS
2. Porcent	aje que pasa la	ilialia IV 40.	J2.0470			
3. Porcent	aje que pasa la	malla N°10:	97.69%	1		
			_			
CI	RITERIO GRANI	ULOMETRÍA		CRIT	ERIO LIMITES ATT	ERBEG
			-			_
	CU:	2.32		LL:	NP	
			_			_
	CC:	0.99		IP:	NP	
			ÍNDICE DE GRUF	20		
			0			

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES GRANULARES				
GRUPO TIPOLOGÍA CALIDAD				
A-3		EXCELENTE O		
A-5	ARENA FINA	BUENO		

En conclusión es un suelo: A-3(0)

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash

Proyecto: 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

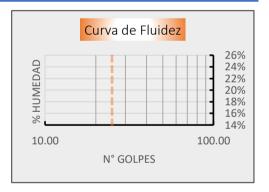
 Muestra:
 Calicata N°
 15
 Estrato
 03
 Profundidad:
 2.00 - 2.50 m

 Fecha:
 Setiembre del 2024
 Coordenadas:
 9004820 m s - 7622010 m E

1. ANALISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO (NTP 339.128)

Peso total de la muestra (g)	495.00
Peso final de la muestra (g)	494.50

MALLAS	ABERTURA (mm)	Peso Retenido (gr)	% Pasa
1"	25.400	0.000	100.00%
3/4"	19.050	0.000	100.00%
1/2"	12.500	0.000	100.00%
3/8"	9.525	0.000	100.00%
N°4	4.760	11.400	97.69%
N°10	2.000	29.800	91.67%
N°20	0.840	35.400	84.51%
N°40	0.425	45.700	75.27%
N°60	0.250	59.600	63.22%
N°100	0.149	74.800	48.09%
N°200	0.074	32.400	41.54%
> N°200		205.400	0.00%


2. LIMITES DE CONSISTENCIA (NTP 339.129)

A. LIMITE LIQUIDO						
PARAMETRO		T	ara N°			
PARAIVIETRO	1 2 3 4			4		
1. Numero de golpes						
2. Peso de la tara (gr)						
3. Peso tara + Suelo humedo (gr)	NO PRESENTA					
4. Peso tara + Suelo seco (gr)						
5. Peso agua (gr)						
6. Peso Suelo seco (gr)						
7. Contenido Humedad (%)						

B. LIMITE PLASTICO					
DADAMETRO	Tara N°				
PARAMETRO	1	2	3]	
1. Peso de la tara (gr)					
2. Peso tara + Suelo humedo (gr)					
3. Peso tara + Suelo seco (gr)	NO PRESENTA				
4. Peso agua (gr)					
5. Peso Suelo seco (gr)					
6. Contenido Humedad (%)					

3. CONTENIDO DE HUMEDAD (NTP 339.127)

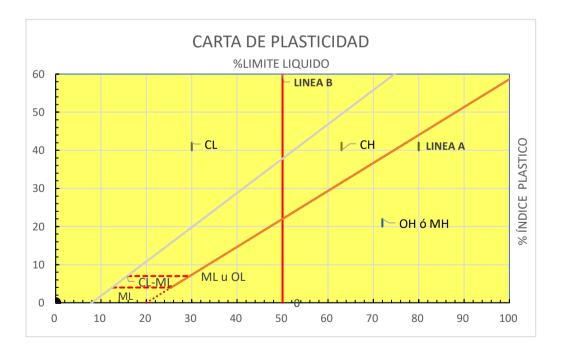
PARAMETROS				
PARAIVIE I ROS	1	2	3	
1. Peso de la tara (gr)	29.082	29.043	28.783	
2. Peso tara + Suelo humedo (gr)	98.366	111.440	100.679	16.10%
3. Peso tara + Suelo seco (gr)	88.654	100.043	90.788	16.10%
4. Peso agua (gr)	9.712	11.397	9.891	
5. Peso Suelo seco (gr)	59.572	71.000	62.005	
6. Contenido Humedad (%)	16.30%	16.05%	15.95%	

Grava %	2.31%
Arena %	56.16%
Finos %	41.54%
Limite Líquido	NP
Limite Plástico	NP
Índice de Plasticidad	NP
Contenido Humedad	16.10%
Clasificacion SUCS	SM
Clasificacion AAHSTO	A-4(0)
Gravedad Especifica	2.672
Índice de Grupo	0.00

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS - SUCS

CLASIFICACION DE SUELOS POR EL METODO SUCS "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Departamento de Ancash -2022" Proyecto: Localización: Distrito Santa, Provincia Santa, Ancash Tesistas Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Muestra: Calicata N° **Estrato** 03 Profundidad: 2.00 - 2.50 m Fecha: Setiembre del 2024 Coordenadas: 9004820 m S - 762010 m E 41.54% 1. Porcentaje que pasa la malla N°200: %FINOS<50% **SUELO DE PARTICULAS GRUESAS** 2. Porcentaje que pasa la malla N°4: 97.69% %ARENA>50% **ARENA**


CRITERIO PARA CLASIFICACIÓN: %FINOS>12%

CRITERIO GRANULOMETRÍA

CRITERIO LIMITES ATTERBEG

CU: NP

IP: NP

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

CS -AASHTO

	CLASIFICACION DE	SUELOS POR E	L METODO AASHT	0
Proyecto: Localización: Tesistas	2022" Distrito Santa, Provincia Santa, Anca	sh	el distrito de Santa, Provincia de Santa,	Departamento de Ancash -
Muestra:	Montalvan Gonzales Katerinhe Palon Calicata N° 15 Estrato	na - Guzman Vasquez Rogger Jul	en Profundidad:	2.00 - 2.50 m
Fecha:	Setiembre del 2024		Coordenadas:	9004820 m S - 762010 m E
1. Porcenta	je que pasa la malla N°200:	41.54%		NOS>35%
2. Porcenta	aje que pasa la malla N°40:	84.51%	IVIATERIALES LI	MOSO ARCILLOSO
3. Porcenta	aje que pasa la malla N°10:	91.67%]	
CR	RITERIO GRANULOMETRÍA		CRITERIO LIMITES AT	TTERBEG
	CU: NP		LL: NP	
	CC: NP		IP: NP	
		ÍNDICE DE GRUPO 0		

CARACTERISTICAS SEGÚN CUADRO AASHTO

MATERIALES LIMOSO ARCILLOSO				
GRUPO TIPOLOGÍA CALIDAD				
A-4	SUELO LIMOSO	POBRE A MALO		

En conclusión es un suelo: A-4(0)

ANEXO 3 ENSAYOS DE CORTE DIRECTO

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 1 Muestra: 1 Fecha: Set-24

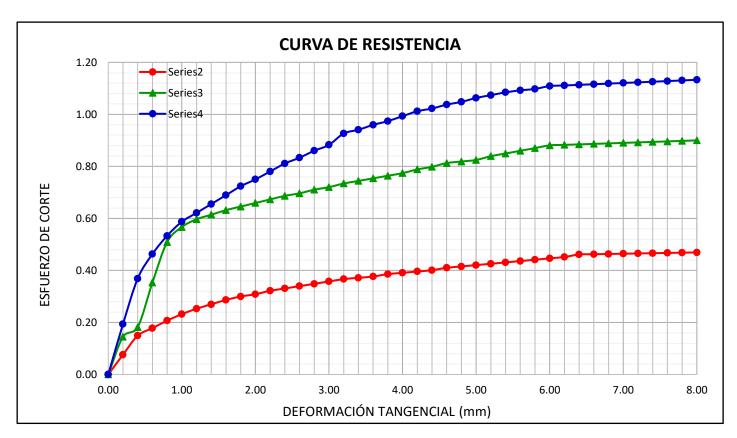
	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	10	00	100		100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
DEFORMACIÓN TANGENCIAL (mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	7.58	0.076	14.46	0.145	19.32	0.194
0.400	14.87	0.149	18.11	0.182	36.71	0.369
0.600	17.7	0.178	35.1	0.353	46.01	0.463
0.800	20.54	0.207	50.46	0.509	52.88	0.533
1.000	22.97	0.232	56.12	0.567	58.14	0.587
1.200	24.99	0.253	58.95	0.597	61.37	0.621
1.400	26.6	0.270	60.56	0.614	64.61	0.655
1.600	28.22	0.287	62.18	0.632	67.84	0.689
1.800	29.44	0.300	63.39	0.646	71.07	0.724
2.000	30.25	0.309	64.61	0.659	73.50	0.750
2.200	31.46	0.322	65.82	0.673	76.33	0.780
2.400	32.27	0.331	67.03	0.687	79.16	0.811
2.600	33.08	0.340	67.84	0.697	81.18	0.833
2.800	33.88	0.349	69.05	0.710	83.61	0.860
3.000	34.69	0.358	69.86	0.720	85.63	0.883
3.200	35.5	0.367	71.07	0.734	89.67	0.926
3.400	35.9	0.372	71.88	0.744	90.88	0.941
3.600	36.31	0.377	72.69	0.754	92.50	0.960
3.800	37.12	0.386	73.5	0.764	93.71	0.974
4.000	37.52	0.391	74.31	0.774	95.33	0.993
4.200	37.93	0.396	75.52	0.788	96.95	1.012
4.400	38.33	0.401	76.33	0.798	97.75	1.022
4.600	39.14	0.410	77.54	0.813	98.97	1.037
4.800	39.54	0.415	77.95	0.819	99.77	1.048
5.000	39.95	0.421	78.35	0.825	100.99	1.063
5.200	40.35	0.426	79.56	0.839	101.80	1.074
5.400	40.76	0.431	80.37	0.850	102.60	1.085
5.600	41.16	0.436	81.18	0.860	103.10	1.092
5.800	41.56	0.441	81.99	0.870	103.41	1.098
6.000	41.97	0.446	82.8	0.881	104.22	1.109
6.200	42.37	0.452	82.8	0.883	104.22	1.111
6.400	43.18	0.461	82.8	0.885	104.22	1.113
6.600	43.18	0.462	82.8	0.887	104.22	1.116
6.800	43.18	0.463	82.8	0.888	104.22	1.118
7.000	43.18	0.464	82.8	0.890	104.22	1.121

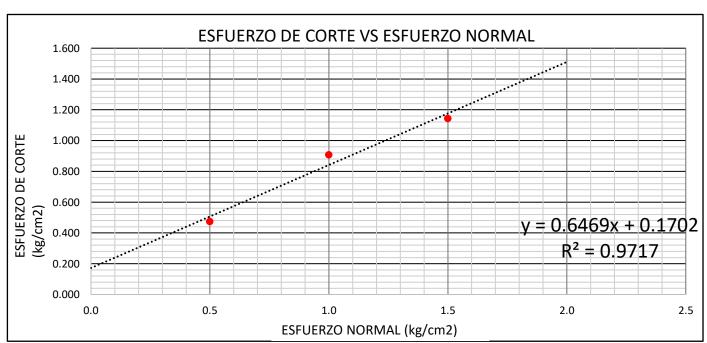
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 1 Muestra: 1 Fecha: Set-24

7.200	43.18	0.465	82.8	0.892	104.22	1.123
7.400	43.18	0.466	82.8	0.894	104.22	1.125
7.600	43.18	0.467	82.8	0.896	104.22	1.128
7.800	43.18	0.468	82.8	0.898	104.22	1.130
8.000	43.18	0.469	82.8	0.900	104.22	1.133

C = 0.1702	
$\Phi = 32.9^{\circ}$	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 2 Muestra: 1 Fecha: Set-24

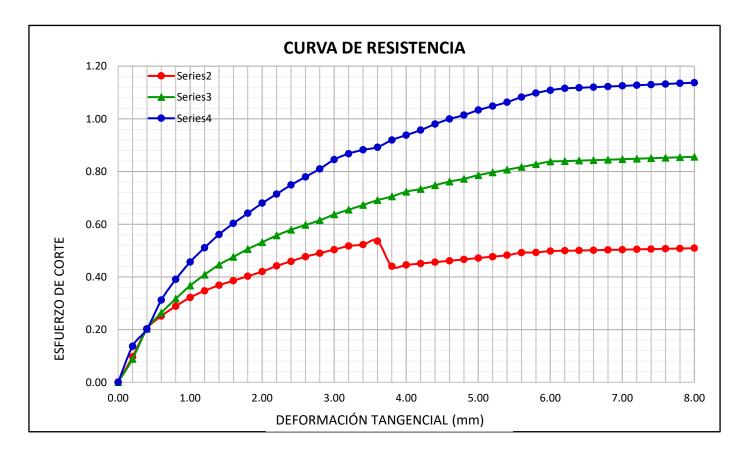
	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III		
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino	
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10	
AREA (cm2)	10	100		100		100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400	
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%	
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5	
	ESPEC	IMEN I	ESPECI	MEN II	ESPECI	MEN III	
DEFORMACIÓN TANGENCIAL	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE	
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	
0.000	0.00	0.000	0.00	0.000	0.00	0.000	
0.200	9.6	0.096	8.79	0.088	13.65	0.137	
0.400	20.13	0.202	20.13	0.202	20.13	0.202	
0.600	24.99	0.251	26.2	0.264	31.05	0.312	
0.800	28.63	0.289	31.46	0.317	38.73	0.390	
1.000	31.86	0.322	36.31	0.367	45.20	0.457	
1.200	34.29	0.347	40.35	0.408	50.46	0.511	
1.400	36.31	0.368	43.99	0.446	55.31	0.561	
1.600	37.93	0.385	46.82	0.476	59.35	0.603	
1.800	39.54	0.403	49.65	0.506	62.99	0.641	
2.000	41.16	0.420	52.07	0.531	66.63	0.680	
2.200	43.18	0.442	54.5	0.557	69.86	0.714	
2.400	44.8	0.459	56.52	0.579	73.09	0.749	
2.600	46.42	0.477	58.14	0.597	75.92	0.779	
2.800	47.63	0.490	59.76	0.615	78.75	0.810	
3.000	48.84	0.504	61.78	0.637	81.99	0.845	
3.200	50.05	0.517	63.39	0.655	84.01	0.868	
3.400	50.46	0.522	65.01	0.673	85.22	0.882	
3.600	51.67	0.536	66.63	0.691	86.03	0.892	
3.800	42.37	0.440	67.84	0.705	88.46	0.920	
4.000	42.78	0.446	69.46	0.724	90.07	0.938	
4.200	43.18	0.451	70.27	0.734	91.69	0.957	
4.400	43.59	0.456	71.48	0.748	93.71	0.980	
4.600	43.99	0.461	72.69	0.762	95.33	0.999	
4.800	44.39	0.466	73.5	0.772	96.54	1.014	
5.000	44.8	0.472	74.71	0.786	98.16	1.033	
5.200	45.2	0.477	75.52	0.797	99.37	1.048	
5.400	45.61	0.482	76.33	0.807	100.58	1.063	
5.600	46.42	0.492	77.14	0.817	102.20	1.083	
5.800	46.42	0.493	77.95	0.827	103.41	1.098	
6.000	46.82	0.498	78.75	0.838	104.22	1.109	
6.200	46.82	0.499	78.75	0.840	104.63	1.115	
6.400	46.82	0.500	78.75	0.841	104.63	1.118	
6.600	46.82	0.501	78.75	0.843	104.63	1.120	
6.800	46.82	0.502	78.75	0.845	104.63	1.123	
7.000	46.82	0.503	78.75	0.847	104.63	1.125	

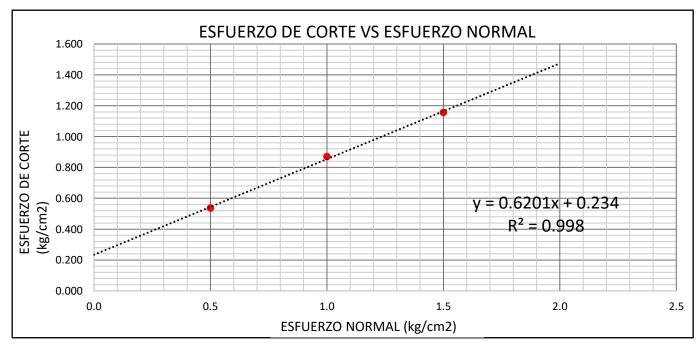
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 2 Muestra: 1 Fecha: Set-24

7.200	46.82	0.505	78.75	0.849	104.63	1.127
7.400	46.82	0.506	78.75	0.850	104.63	1.130
7.600	46.82	0.507	78.75	0.852	104.63	1.132
7.800	46.82	0.508	78.75	0.854	104.63	1.135
8.000	46.82	0.509	78.75	0.856	104.63	1.137

C = 0.234	
$\Phi = 29.8^{\circ}$	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 3 Muestra: 1 Fecha: Set-24

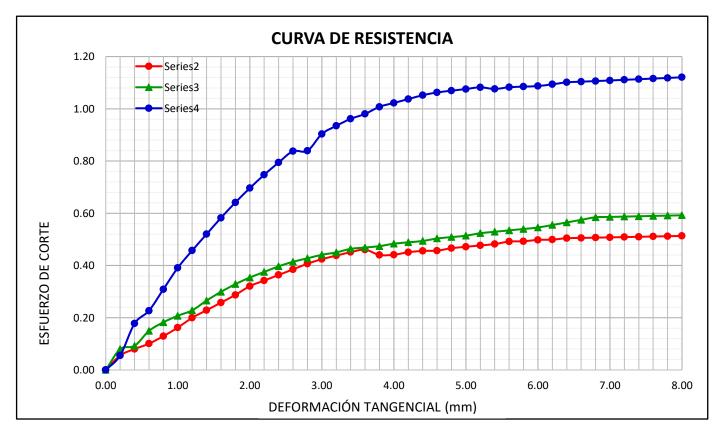
	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III		
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino	
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10	
AREA (cm2)	10	100		100		100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400	
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%	
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5	
	ESPEC	IMEN I	ESPECI	MEN II	ESPECI	MEN III	
DEFORMACIÓN TANGENCIAL	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE	
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	
0.000	0.00	0.000	0.00	0.000	0.00	0.000	
0.200	5.55	0.056	7.98	0.080	5.55	0.056	
0.400	7.98	0.080	9.2	0.092	17.70	0.178	
0.600	10.01	0.101	14.87	0.150	22.56	0.227	
0.800	12.84	0.129	18.11	0.183	30.65	0.309	
1.000	16.08	0.162	20.54	0.207	38.73	0.391	
1.200	19.73	0.200	22.56	0.228	45.20	0.457	
1.400	22.56	0.229	26.2	0.266	51.27	0.520	
1.600	25.39	0.258	29.44	0.299	57.33	0.583	
1.800	28.22	0.287	32.27	0.329	62.99	0.641	
2.000	31.46	0.321	34.69	0.354	68.24	0.696	
2.200	33.48	0.342	36.71	0.375	73.09	0.747	
2.400	35.5	0.364	38.73	0.397	77.54	0.794	
2.600	37.52	0.385	40.35	0.414	81.58	0.838	
2.800	39.54	0.407	41.56	0.428	81.58	0.839	
3.000	41.16	0.424	42.78	0.441	87.65	0.904	
3.200	42.37	0.438	43.59	0.450	90.48	0.935	
3.400	43.59	0.451	44.8	0.464	92.90	0.962	
3.600	44.39	0.460	45.2	0.469	94.52	0.980	
3.800	42.37	0.440	45.61	0.474	96.95	1.008	
4.000	42.37	0.441	46.42	0.484	98.16	1.023	
4.200	43.18	0.451	46.82	0.489	99.37	1.037	
4.400	43.59	0.456	47.22	0.494	100.58	1.052	
4.600	43.59	0.457	48.03	0.503	101.39	1.063	
4.800	44.39	0.466	48.44	0.509	101.80	1.069	
5.000	44.8	0.472	48.84	0.514	102.20	1.076	
5.200	45.2	0.477	49.65	0.524	102.60	1.082	
5.400	45.61	0.482	50.05	0.529	101.80	1.076	
5.600	46.42	0.492	50.46	0.535	102.20	1.083	
5.800	46.42	0.493	50.86	0.540	102.20	1.085	
6.000	46.82	0.498	51.27	0.545	102.20	1.087	
6.200	46.82	0.499	52.07	0.555	102.60	1.094	
6.400	47.22	0.504	52.88	0.565	103.10	1.101	
6.600	47.22	0.506	53.69	0.575	103.10	1.104	
6.800	47.22	0.507	54.5	0.585	103.10	1.106	
7.000	47.22	0.508	54.5	0.586	103.10	1.109	

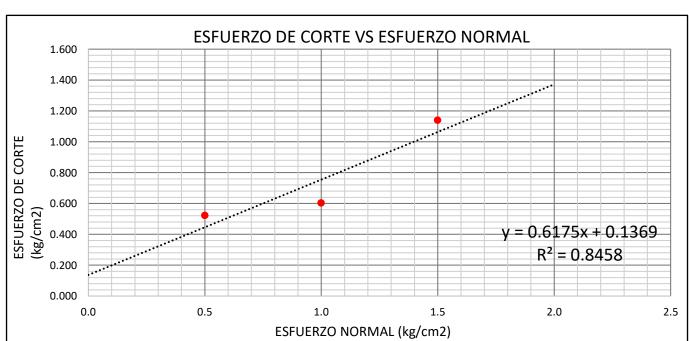
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 3 Muestra: 1 Fecha: Set-24

7.200	47.22	0.509	54.5	0.587	103.10	1.111
7.400	47.22	0.510	54.5	0.589	103.10	1.113
7.600	47.22	0.511	54.5	0.590	103.10	1.116
7.800	47.22	0.512	54.5	0.591	103.10	1.118
8.000	47.22	0.513	54.5	0.592	103.10	1.121

C = 0.1369					
$\Phi = 31.7^{\circ}$					

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 4 Muestra: 1 Fecha: Set-24

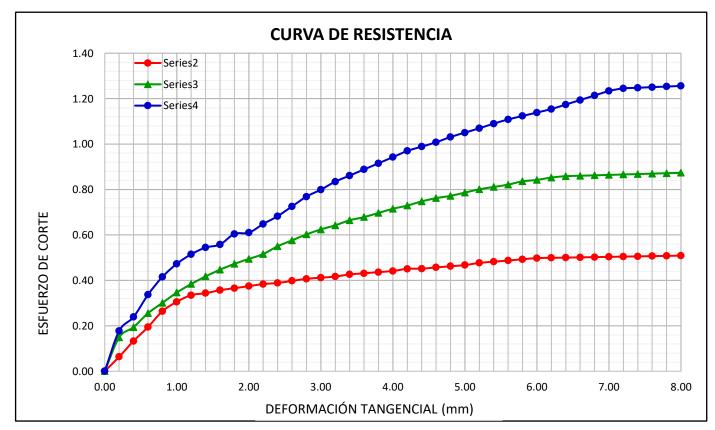
DEL ECDECIMAEN	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III		
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino	
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10	
AREA (cm2)	1	100		100		100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400	
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%	
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5	
-	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III	
DEFORMACIÓN TANGENCIAL	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE	
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	
0.000	0.00	0.000	0.00	0.000	0.00	0.000	
0.200	6.36	0.064	14.87	0.149	17.70	0.177	
0.400	13.25	0.133	19.32	0.194	23.78	0.239	
0.600	19.32	0.194	25.39	0.255	33.48	0.337	
0.800	26.2	0.264	29.84	0.301	41.16	0.415	
1.000	30.25	0.306	34.29	0.346	46.82	0.473	
1.200	33.08	0.335	37.93	0.384	50.86	0.515	
1.400	33.88	0.344	41.16	0.417	53.69	0.545	
1.600	35.1	0.357	43.99	0.447	54.90	0.558	
1.800	35.9	0.366	46.42	0.473	59.35	0.604	
2.000	36.71	0.375	48.44	0.494	59.76	0.610	
2.200	37.52	0.384	50.46	0.516	63.39	0.648	
2.400	37.93	0.389	53.69	0.550	66.63	0.683	
2.600	38.73	0.398	56.12	0.576	70.67	0.726	
2.800	39.54	0.407	58.54	0.602	74.71	0.769	
3.000	39.95	0.412	60.56	0.624	77.54	0.799	
3.200	40.35	0.417	62.18	0.642	80.78	0.835	
3.400	41.16	0.426	64.2	0.665	83.20	0.861	
3.600	41.56	0.431	65.41	0.679	85.63	0.888	
3.800	41.97	0.436	67.03	0.697	88.05	0.915	
4.000	42.37	0.441	68.65	0.715	90.48	0.943	
4.200	43.18	0.451	69.86	0.729	92.90	0.970	
4.400	43.18	0.452	71.48	0.748	94.52	0.989	
4.600	43.59	0.457	72.69	0.762	96.14	1.008	
4.800	43.99	0.462	73.5	0.772	98.16	1.031	
5.000	44.39	0.467	74.71	0.786	99.77	1.050	
5.200	45.2	0.477	75.92	0.780	101.39	1.070	
5.400	45.61	0.482	76.73	0.811	103.10	1.090	
5.600	46.01	0.482	77.54	0.811	104.63	1.108	
5.800	46.42	0.487	77.34	0.821	105.84	1.108	
6.000	46.82	0.498	79.16	0.842	107.05	1.139	
6.200	46.82	0.498	79.10	0.853	107.03	1.154	
6.400	46.82						
	46.82	0.500	80.37	0.859	109.88	1.174	
6.600		0.501	80.37	0.860	111.50	1.194	
6.800	46.82	0.502	80.37	0.862	113.11	1.214	
7.000	46.82	0.503	80.37	0.864	114.73	1.234	

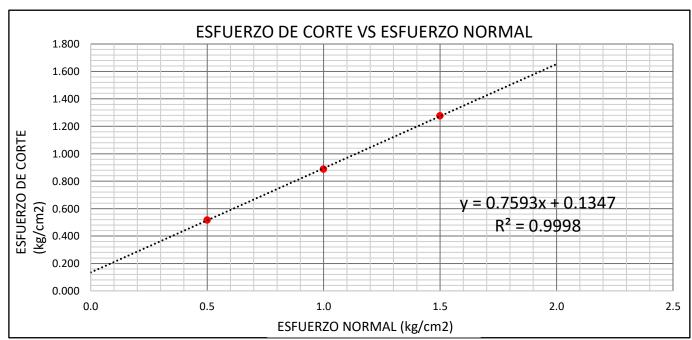
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 4 Muestra: 1 Fecha: Set-24

7.200	46.82	0.505	80.37	0.866	115.54	1.245
7.400	46.82	0.506	80.37	0.868	115.54	1.248
7.600	46.82	0.507	80.37	0.870	115.54	1.250
7.800	46.82	0.508	80.37	0.872	115.54	1.253
8.000	46.82	0.509	80.37	0.874	115.54	1.256

C = 0.1347	
$\Phi = 37.21^{\circ}$	

UNS UNIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

oyecto: Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 5 Muestra: 1 Fecha: Set-24

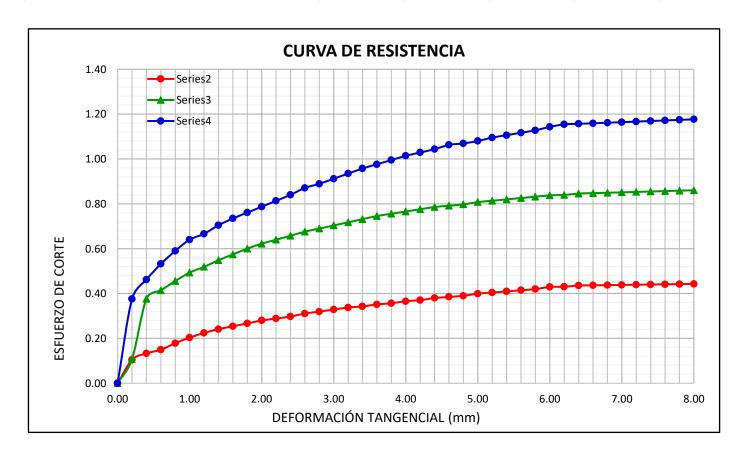
DEL ECDECIMAEN	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	100		100		100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
-	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
DEFORMACIÓN TANGENCIAL	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	10.41	0.104	10.82	0.108	37.52	0.376
0.400	13.25	0.133	37.52	0.377	46.01	0.462
0.600	14.87	0.150	41.16	0.414	52.88	0.532
0.800	17.7	0.178	45.2	0.456	58.54	0.590
1.000	20.13	0.203	48.84	0.493	63.39	0.640
1.200	22.16	0.224	51.27	0.519	65.82	0.666
1.400	23.78	0.241	54.1	0.549	69.46	0.704
1.600	24.99	0.254	56.52	0.574	72.29	0.735
1.800	26.2	0.267	58.95	0.600	74.71	0.761
2.000	27.41	0.280	60.97	0.622	77.14	0.787
2.200	28.22	0.289	62.58	0.640	79.56	0.813
2.400	29.03	0.297	64.2	0.658	81.99	0.840
2.600	30.25	0.311	65.82	0.676	84.82	0.871
2.800	31.05	0.319	67.03	0.690	86.43	0.889
3.000	31.86	0.328	68.24	0.704	88.46	0.912
3.200	32.67	0.338	69.46	0.718	90.48	0.935
3.400	33.08	0.342	70.67	0.732	92.50	0.958
3.600	33.88	0.351	71.88	0.746	94.12	0.976
3.800	34.29	0.356	72.69	0.756	95.73	0.995
4.000	35.1	0.366	73.5	0.766	97.35	1.014
4.200	35.5	0.371	74.31	0.776	98.56	1.029
4.400	36.31	0.380	75.12	0.786	99.77	1.044
4.600	36.71	0.385	75.52	0.792	101.39	1.063
4.800	37.12	0.390	75.92	0.797	101.80	1.069
5.000	37.93	0.399	76.73	0.808	102.60	1.080
5.200	38.33	0.404	77.14	0.814	103.82	1.095
5.400	38.73	0.409	77.54	0.820	104.63	1.106
5.600	39.14	0.415	77.95	0.826	105.43	1.117
5.800	39.54	0.413	78.35	0.832	106.24	1.128
6.000	40.35	0.420	78.75	0.832	100.24	1.128
6.200	40.35	0.429	78.75	0.840	107.46	1.143
6.400	40.35					
	40.76	0.435	79.16	0.846	108.26	1.157
6.600		0.436	79.16	0.848	108.26	1.159
6.800	40.76	0.437	79.16	0.849	108.26	1.162
7.000	40.76	0.438	79.16	0.851	108.26	1.164

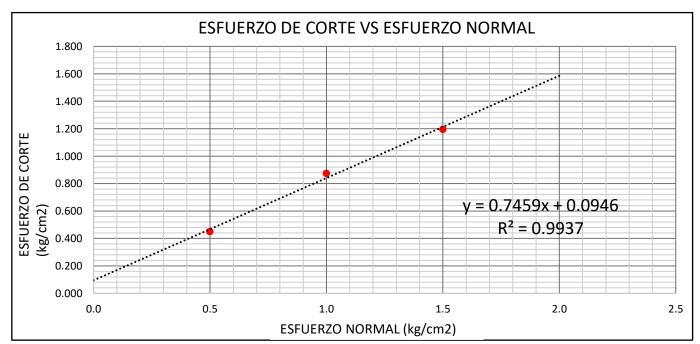
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 5 Muestra: 1 Fecha: Set-24

7.200	40.76	0.439	79.16	0.853	108.26	1.167
7.400	40.76	0.440	79.16	0.855	108.26	1.169
7.600	40.76	0.441	79.16	0.857	108.26	1.172
7.800	40.76	0.442	79.16	0.859	108.26	1.174
8.000	40.76	0.443	79.16	0.860	108.26	1.177

C = 0.0946
$\Phi = 36.72^{\circ}$

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 6 Muestra: 1 Fecha: Set-24

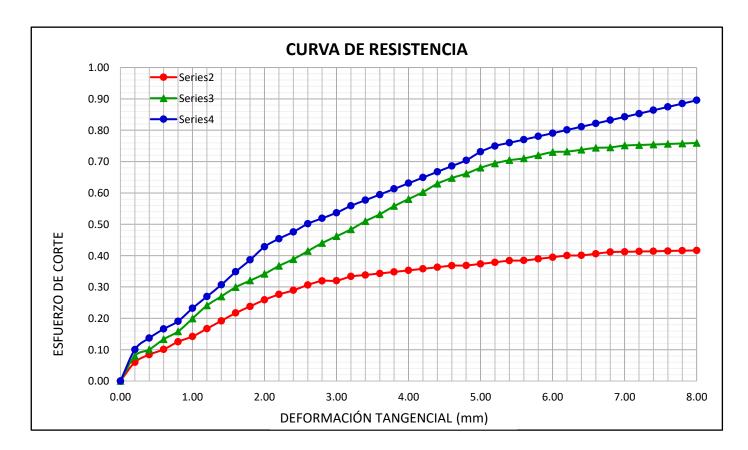
	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	10	00	100		100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
	ESPEC	IMEN I	ESPECI	MEN II	ESPECI	MEN III
DEFORMACIÓN TANGENCIAL	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	5.96	0.060	7.98	0.080	10.01	0.100
0.400	8.39	0.084	10.01	0.101	13.65	0.137
0.600	10.01	0.101	13.25	0.133	16.49	0.166
0.800	12.44	0.125	15.68	0.158	18.92	0.191
1.000	14.06	0.142	19.73	0.199	22.97	0.232
1.200	16.49	0.167	23.78	0.241	26.60	0.269
1.400	18.92	0.192	26.6	0.270	30.25	0.307
1.600	21.35	0.217	29.44	0.299	34.29	0.348
1.800	23.37	0.238	31.46	0.320	37.93	0.386
2.000	25.39	0.259	33.48	0.342	41.97	0.428
2.200	27.01	0.276	35.9	0.367	44.39	0.454
2.400	28.22	0.289	37.93	0.389	46.42	0.476
2.600	29.84	0.306	40.35	0.414	48.84	0.501
2.800	31.05	0.319	42.78	0.440	50.46	0.519
3.000	31.05	0.320	44.8	0.462	52.07	0.537
3.200	32.27	0.333	46.82	0.484	54.10	0.559
3.400	32.67	0.338	49.24	0.510	55.71	0.577
3.600	33.08	0.343	51.27	0.532	57.33	0.595
3.800	33.48	0.348	53.69	0.558	58.95	0.613
4.000	33.88	0.353	55.71	0.580	60.56	0.631
4.200	34.29	0.358	57.73	0.603	62.18	0.649
4.400	34.69	0.363	60.16	0.629	63.80	0.667
4.600	35.1	0.368	61.78	0.648	65.41	0.686
4.800	35.1	0.369	62.99	0.662	67.03	0.704
5.000	35.5	0.374	64.61	0.680	69.46	0.731
5.200	35.9	0.379	65.82	0.694	71.07	0.750
5.400	36.31	0.384	66.63	0.704	71.88	0.760
5.600	36.31	0.385	67.03	0.710	72.69	0.770
5.800	36.71	0.390	67.84	0.720	73.50	0.780
6.000	37.12	0.395	68.65	0.730	74.31	0.791
6.200	37.52	0.400	68.65	0.732	75.12	0.801
6.400	37.52	0.401	69.05	0.738	75.92	0.811
6.600	37.93	0.406	69.46	0.744	76.73	0.822
6.800	38.33	0.411	69.46	0.745	77.54	0.832
7.000	38.33	0.412	69.86	0.751	78.35	0.842

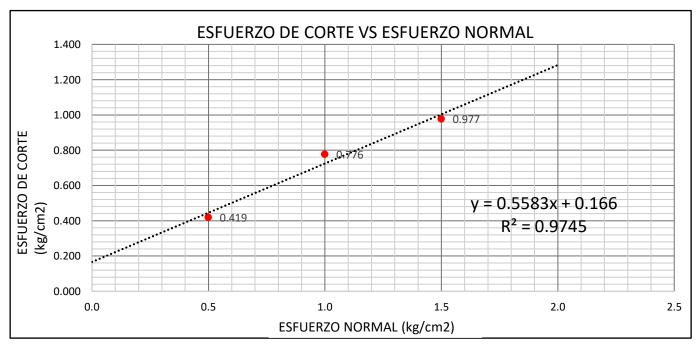
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 6 Muestra: 1 Fecha: Set-24

7.200	38.33	0.413	69.86	0.753	79.16	0.853
7.400	38.33	0.414	69.86	0.754	79.97	0.864
7.600	38.33	0.415	69.86	0.756	80.78	0.874
7.800	38.33	0.416	69.86	0.758	81.58	0.885
8.000	38.33	0.417	69.86	0.759	82.39	0.896

C = 0.166
$\Phi = 29.17^{\circ}$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 7 Muestra: 1 Fecha: Set-24

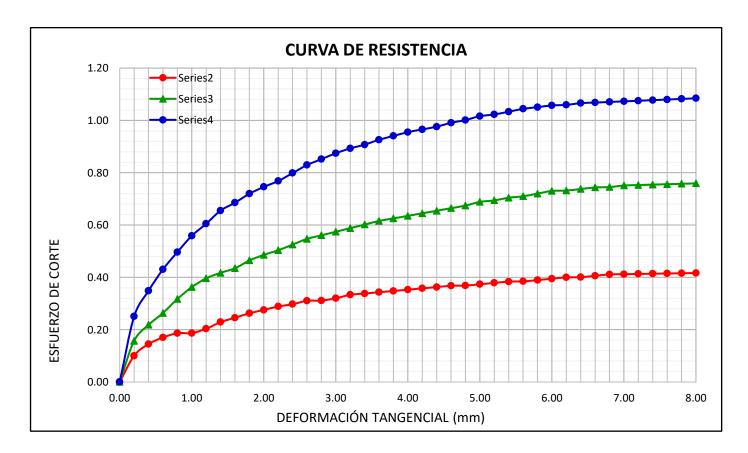
	ECDEC	IMEN I	ESDEC	NAENLII	ECDECI	NAENIII
DEL ESPECIMEN	Inicio	Termino		MEN II		MEN III
ALTUDA (are)			Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10 2.10 2.10 2.10 100		2.10 2.10			
AREA (cm2)						
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60% .5	9.60%	9.60%	9.60%	9.60% .5
ESFUERZO NORMAL (kg/cm2)		IMEN I		.0 IMEN II		MEN III
	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
DEFORMACIÓN TANGENCIAL						
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
0.000	(kg)	(Kg/cm2)	(kg) 0.00	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000		0.000	0.00	0.000
0.200	10.01	0.100	15.68	0.157	24.99	0.250
0.400	14.46	0.145	21.75	0.218	34.69	0.348
0.600	16.89	0.170	26.2	0.264	42.78	0.430
0.800	18.51	0.187	31.46	0.317	49.24	0.496
1.000	18.51	0.187	35.9	0.363	55.31	0.559
1.200	20.13	0.204	39.14	0.396	59.76	0.605
1.400	22.56	0.229	41.16	0.417	64.61	0.655
1.600	24.18	0.246	42.78	0.435	67.44	0.685
1.800	25.79	0.263	45.61	0.464	70.67	0.720
2.000	27.01	0.276	47.63	0.486	73.09	0.746
2.200	28.22	0.289	49.24	0.503	75.12	0.768
2.400	29.03	0.297	51.27	0.525	77.95	0.799
2.600	30.25	0.311	53.29	0.547	80.78	0.829
2.800	30.25	0.311	54.5	0.561	82.80	0.852
3.000	31.05	0.320	55.71	0.574	84.82	0.874
3.200	32.27	0.333	56.93	0.588	86.43	0.893
3.400	32.67	0.338	58.14	0.602	87.65	0.907
3.600	33.08	0.343	59.35	0.616	89.26	0.926
3.800	33.48	0.348	60.16	0.625	90.48	0.941
4.000	33.88	0.353	60.97	0.635	91.69	0.955
4.200	34.29	0.358	61.78	0.645	92.50	0.966
4.400	34.69	0.363	62.58	0.655	93.31	0.976
4.600	35.1	0.368	63.39	0.664	94.52	0.991
4.800	35.1	0.369	64.2	0.674	95.33	1.001
5.000	35.5	0.374	65.41	0.689	96.54	1.016
5.200	35.9	0.379	65.82	0.694	96.95	1.023
5.400	36.31	0.384	66.63	0.704	97.75	1.033
5.600	36.31	0.385	67.03	0.710	98.56	1.044
5.800	36.71	0.390	67.84	0.720	98.97	1.051
6.000	37.12	0.395	68.65	0.730	99.37	1.057
6.200	37.52	0.400	68.65	0.732	99.37	1.059
6.400	37.52	0.401	69.05	0.738	99.77	1.066
6.600	37.93	0.406	69.46	0.744	99.77	1.068
6.800	38.33	0.411	69.46	0.745	99.77	1.070
7.000	38.33	0.412	69.86	0.751	99.77	1.073

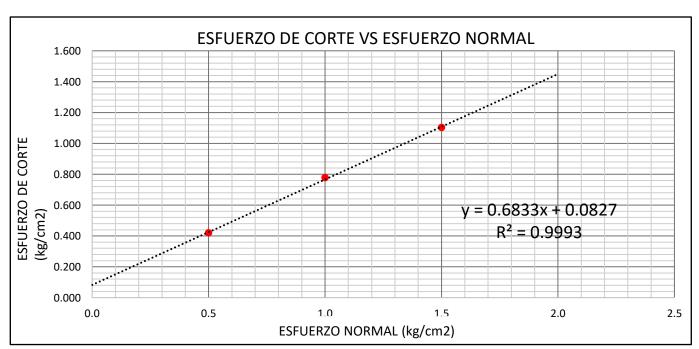
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 7 Muestra: 1 Fecha: Set-24

7.200	38.33	0.413	69.86	0.753	99.77	1.075
7.400	38.33	0.414	69.86	0.754	99.77	1.077
7.600	38.33	0.415	69.86	0.756	99.77	1.080
7.800	38.33	0.416	69.86	0.758	99.77	1.082
8.000	38.33	0.417	69.86	0.759	99.77	1.084

C = 0.1153 kg/cm2 $\Phi = 34.34^{\circ}$

UNS NACIONAL DEL SANTA

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

/ecto: Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 8 Muestra: 1 Fecha: Set-24

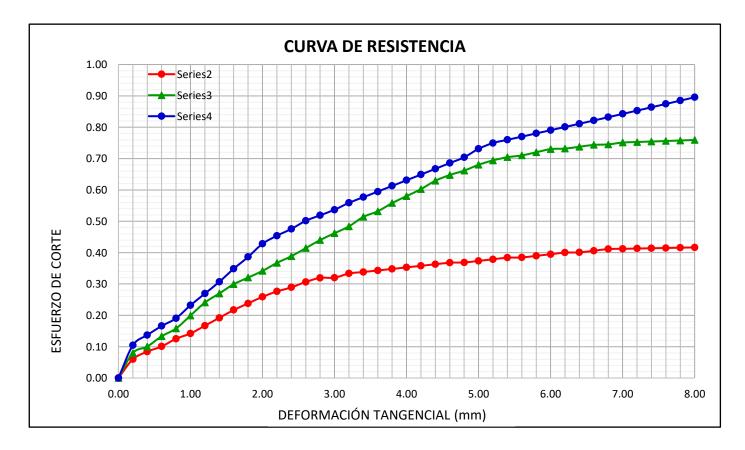
DEL ECDECIMAEN	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	10	100		100		00
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
DEFORMACIÓN TANGENCIAL	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
(mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	5.96	0.060	7.98	0.080	10.41	0.104
0.400	8.39	0.084	10.01	0.101	13.65	0.137
0.600	10.01	0.101	13.25	0.133	16.49	0.166
0.800	12.44	0.125	15.68	0.158	18.92	0.191
1.000	14.06	0.142	19.73	0.199	22.97	0.232
1.200	16.49	0.167	23.78	0.241	26.60	0.269
1.400	18.92	0.192	26.6	0.270	30.25	0.307
1.600	21.35	0.217	29.44	0.299	34.29	0.348
1.800	23.37	0.238	31.46	0.320	37.93	0.386
2.000	25.39	0.259	33.48	0.342	41.97	0.428
2.200	27.01	0.276	35.9	0.367	44.39	0.454
2.400	28.22	0.289	37.93	0.389	46.42	0.476
2.600	29.84	0.306	40.35	0.414	48.84	0.501
2.800	31.05	0.319	42.78	0.440	50.46	0.519
3.000	31.05	0.320	44.8	0.462	52.07	0.537
3.200	32.27	0.333	46.82	0.484	54.10	0.559
3.400	32.67	0.338	49.65	0.514	55.71	0.577
3.600	33.08	0.343	51.27	0.532	57.33	0.595
3.800	33.48	0.348	53.69	0.558	58.95	0.613
4.000	33.88	0.353	55.71	0.580	60.56	0.631
4.200	34.29	0.358	57.73	0.603	62.18	0.649
4.400	34.69	0.363	60.16	0.629	63.80	0.667
4.600	35.1	0.368	61.78	0.648	65.41	0.686
4.800	35.1	0.369	62.99	0.662	67.03	0.704
5.000	35.5	0.374	64.61	0.680	69.46	0.731
5.200	35.9	0.379	65.82	0.694	71.07	0.750
5.400	36.31	0.384	66.63	0.704	71.88	0.760
5.600	36.31	0.385	67.03	0.710	72.69	0.770
5.800	36.71	0.390	67.84	0.710	73.50	0.770
6.000	37.12	0.395	68.65	0.720	74.31	0.780
6.200	37.12	0.393	68.65	0.730	75.12	0.791
6.400	37.52					•
		0.401	69.05	0.738	75.92 76.72	0.811
6.600	37.93	0.406	69.46	0.744	76.73	0.822
6.800	38.33	0.411	69.46	0.745	77.54	0.832
7.000	38.33	0.412	69.86	0.751	78.35	0.842

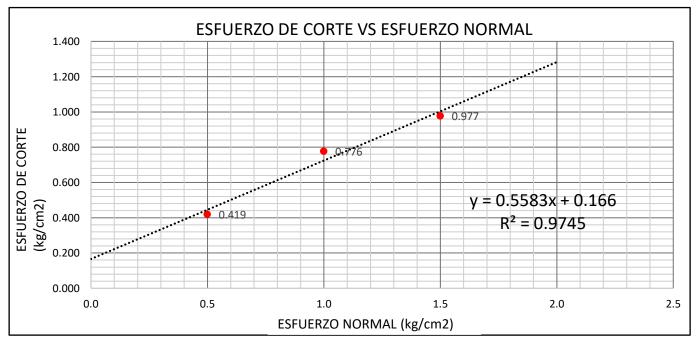
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (ASTM D-3080)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 8 Muestra: 1 Fecha: Set-24

7.200	38.33	0.413	69.86	0.753	79.16	0.853
7.400	38.33	0.414	69.86	0.754	79.97	0.864
7.600	38.33	0.415	69.86	0.756	80.78	0.874
7.800	38.33	0.416	69.86	0.758	81.58	0.885
8.000	38.33	0.417	69.86	0.759	82.39	0.896

C = 0.166
$\Phi = 29.17^{\circ}$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas:

Calicata: Muestra: Fecha: Set-24

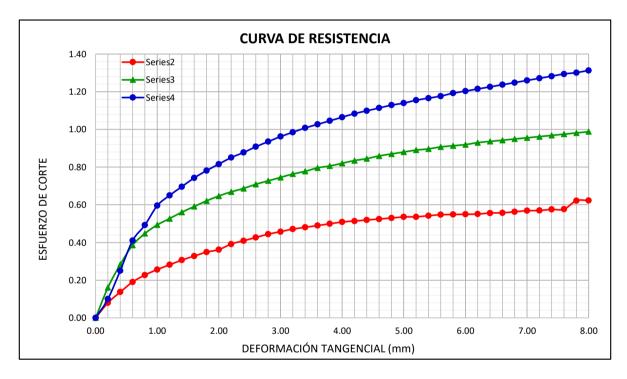
DEL EGDECIMAEN	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	10	00	10	00	100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
DEFORMACIÓN TANGENCIAL (mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	7.98	0.080	16.08	0.161	10.01	0.100
0.400	13.65	0.137	28.22	0.283	24.99	0.251
0.600	18.92	0.190	38.33	0.386	40.76	0.410
0.800	22.56	0.227	44.39	0.447	48.84	0.492
1.000	25.39	0.256	48.84	0.493	58.95	0.595
1.200	27.82	0.282	52.07	0.527	64.20	0.650
1.400	30.25	0.307	55.31	0.561	68.65	0.696
1.600	32.27	0.328	58.14	0.591	73.09	0.743
1.800	34.29	0.349	60.97	0.621	76.73	0.781
2.000	35.5	0.362	63.39	0.647	79.97	0.816
2.200	38.33	0.392	65.41	0.669	83.20	0.851
2.400	39.95	0.409	67.03	0.687	85.63	0.877
2.600	41.56	0.427	69.05	0.709	88.46	0.908
2.800	43.18	0.444	70.67	0.727	90.88	0.935
3.000	44.39	0.458	72.29	0.745	93.31	0.962
3.200	45.61	0.471	73.9	0.763	95.33	0.985
3.400	46.42	0.481	75.12	0.778	97.35	1.008
3.600	47.22	0.490	76.73	0.796	98.97	1.027
3.800	48.03	0.499	77.54	0.806	100.58	1.046
4.000	48.84	0.509	78.75	0.820	102.20	1.065
4.200	49.24	0.514	79.97	0.835	103.82	1.084
4.400	49.65	0.519	80.78	0.845	105.03	1.099
4.600	50.05	0.525	81.99	0.859	106.24	1.114
4.800	50.46	0.530	82.8	0.870	107.46	1.129
5.000	50.86	0.535	83.61	0.880	108.26	1.140
5.200	50.86	0.536	84.41	0.890	109.48	1.155
5.400	51.27	0.542	84.82	0.897	110.28	1.166
5.600	51.67	0.547	85.63	0.907	111.09	1.177
5.800	51.67	0.549	86.03	0.913	112.31	1.192
6.000	51.67	0.550	86.43	0.919	113.11	1.203
6.200	51.67	0.551	87.24	0.930	113.92	1.214
6.400	52.07	0.556	87.65	0.936	114.73	1.226
6.600	52.07	0.557	88.05	0.943	115.54	1.237
6.800	52.48	0.563	88.46	0.949	116.35	1.248
7.000	52.88	0.569	88.86	0.955	117.16	1.260

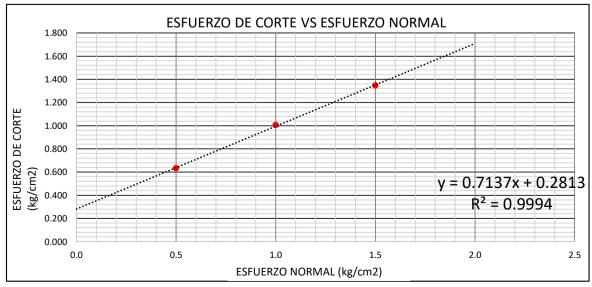
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: Muestra: Fecha: Set-24

7.200	52.88	0.570	89.26	0.962	117.97	1.271
7.400	53.29	0.575	89.67	0.968	118.77	1.283
7.600	53.29	0.577	90.07	0.975	119.58	1.294
7.800	57.33	0.622	90.48	0.981	119.99	1.301
8.000	57.33	0.623	90.88	0.988	120.80	1.313

C = 0.2813
$\Phi = 35.52^{\circ}$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Sonte Poportemento de Angelo 2022"

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paola - Guzmán Vásquez Rogger Juan

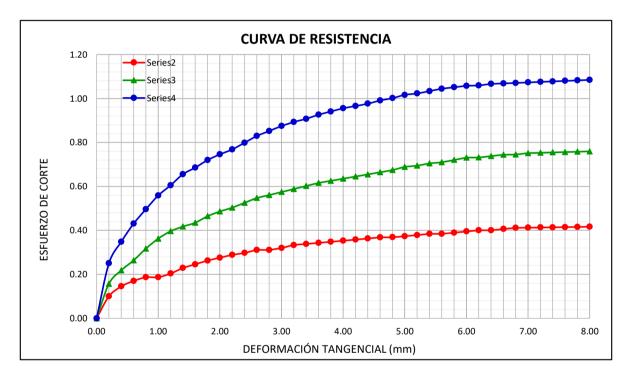
Calicata: 10 Muestra: 1 Fecha: Set-24

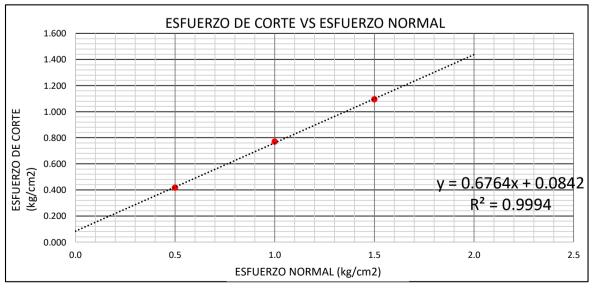
DEL ECDECIMENT	ESPEC	ESPECIMEN I		ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino	
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10	
AREA (cm2)	10	00	10	00	1	00	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400	
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%	
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5	
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III	
DEFORMACIÓN TANGENCIAL (mm)	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	
DEFORMACION TANGENCIAL (MM)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE	
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	
0.000	0.00	0.000	0.00	0.000	0.00	0.000	
0.200	10.01	0.100	15.68	0.157	24.99	0.250	
0.400	14.46	0.145	21.75	0.218	34.69	0.348	
0.600	16.89	0.170	26.2	0.264	42.78	0.430	
0.800	18.51	0.187	31.46	0.317	49.24	0.496	
1.000	18.51	0.187	35.9	0.363	55.31	0.559	
1.200	20.13	0.204	39.14	0.396	59.76	0.605	
1.400	22.56	0.229	41.16	0.417	64.61	0.655	
1.600	24.18	0.246	42.78	0.435	67.44	0.685	
1.800	25.79	0.263	45.61	0.464	70.67	0.720	
2.000	27.01	0.276	47.63	0.486	73.09	0.746	
2.200	28.22	0.289	49.24	0.503	75.12	0.768	
2.400	29.03	0.297	51.27	0.525	77.95	0.799	
2.600	30.25	0.311	53.29	0.547	80.78	0.829	
2.800	30.25	0.311	54.5	0.561	82.80	0.852	
3.000	31.05	0.320	55.71	0.574	84.82	0.874	
3.200	32.27	0.333	56.93	0.588	86.43	0.893	
3.400	32.67	0.338	58.14	0.602	87.65	0.907	
3.600	33.08	0.343	59.35	0.616	89.26	0.926	
3.800	33.48	0.348	60.16	0.625	90.48	0.941	
4.000	33.88	0.353	60.97	0.635	91.69	0.955	
4.200	34.29	0.358	61.78	0.645	92.50	0.966	
4.400	34.69	0.363	62.58	0.655	93.31	0.976	
4.600	35.1	0.368	63.39	0.664	94.52	0.991	
4.800	35.1	0.369	64.2	0.674	95.33	1.001	
5.000	35.5	0.374	65.41	0.689	96.54	1.016	
5.200	35.9	0.379	65.82	0.694	96.95	1.023	
5.400	36.31	0.384	66.63	0.704	97.75	1.033	
5.600	36.31	0.385	67.03	0.710	98.56	1.044	
5.800	36.71	0.390	67.84	0.720	98.97	1.051	
6.000	37.12	0.395	68.65	0.730	99.37	1.057	
6.200	37.52	0.400	68.65	0.732	99.37	1.059	
6.400	37.52	0.401	69.05	0.738	99.77	1.066	
6.600	37.93	0.406	69.46	0.744	99.77	1.068	
6.800	38.33	0.411	69.46	0.745	99.77	1.070	
7.000	38.33	0.412	69.86	0.751	99.77	1.073	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paola - Guzmán Vásquez Rogger Juan

Calicata: 10 Muestra: 1 Fecha: Set-24

7.200	38.33	0.413	69.86	0.753	99.77	1.075
7.400	38.33	0.414	69.86	0.754	99.77	1.077
7.600	38.33	0.415	69.86	0.756	99.77	1.080
7.800	38.33	0.416	69.86	0.758	99.77	1.082
8.000	38.33	0.417	69.86	0.759	99.77	1.084

C = 0.0842	
$\Phi = 34.07^{\circ}$	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas:

Calicata: Muestra: Fecha: Set-24

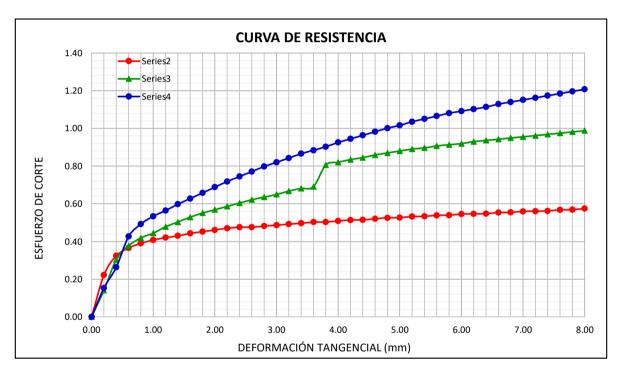
DEL ECDECIMAEN	ESPEC	ESPECIMEN I		ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino	
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10	
AREA (cm2)	10	00	10	00	1	00	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400	
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%	
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5	
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III	
	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	
DEFORMACIÓN TANGENCIAL (mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE	
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	
0.000	0.00	0.000	0.00	0.000	0.00	0.000	
0.200	22.16	0.222	14.06	0.141	15.27	0.153	
0.400	32.27	0.324	30.25	0.304	26.20	0.263	
0.600	36.31	0.365	37.52	0.377	42.37	0.426	
0.800	38.73	0.390	41.56	0.419	48.84	0.492	
1.000	40.35	0.408	43.99	0.444	52.88	0.534	
1.200	41.56	0.421	47.22	0.478	55.71	0.564	
1.400	42.37	0.430	49.65	0.504	58.95	0.598	
1.600	43.59	0.443	52.07	0.529	61.78	0.628	
1.800	44.39	0.452	54.1	0.551	64.61	0.658	
2.000	45.2	0.461	55.71	0.568	67.44	0.688	
2.200	46.01	0.470	57.33	0.586	70.27	0.719	
2.400	46.42	0.476	58.95	0.604	72.69	0.745	
2.600	46.42	0.477	60.56	0.622	75.12	0.771	
2.800	46.82	0.482	61.78	0.636	77.54	0.798	
3.000	47.22	0.487	62.99	0.649	79.56	0.820	
3.200	47.63	0.492	64.61	0.667	81.58	0.843	
3.400	48.03	0.497	65.82	0.681	83.61	0.866	
3.600	48.44	0.502	66.63	0.691	85.22	0.884	
3.800	48.44	0.504	77.54	0.806	86.84	0.903	
4.000	48.84	0.509	78.75	0.820	88.86	0.926	
4.200	49.24	0.514	79.97	0.835	90.48	0.944	
4.400	49.24	0.515	80.78	0.845	92.09	0.963	
4.600	49.65	0.520	81.99	0.859	93.71	0.982	
4.800	50.05	0.526	82.8	0.870	95.33	1.001	
5.000	50.05	0.527	83.61	0.880	96.54	1.016	
5.200	50.46	0.532	84.41	0.890	98.16	1.035	
5.400	50.46	0.533	84.82	0.897	99.37	1.050	
5.600	50.86	0.539	85.63	0.907	100.58	1.065	
5.800	50.86	0.540	86.03	0.913	101.80	1.081	
6.000	51.27	0.545	86.43	0.919	102.60	1.091	
6.200	51.27	0.547	87.24	0.930	103.41	1.102	
6.400	51.27	0.548	87.65	0.936	104.22	1.113	
6.600	51.67	0.553	88.05	0.943	105.43	1.129	
6.800	51.67	0.554	88.46	0.949	106.24	1.140	
7.000	52.07	0.560	88.86	0.955	107.05	1.151	

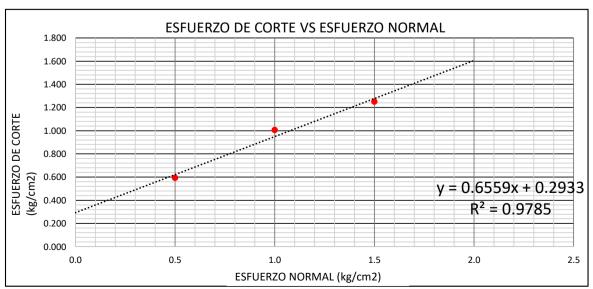
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: Muestra: Set-24

7.200	52.07	0.561	89.26	0.962	107.86	1.162
7.400	52.07	0.562	89.67	0.968	108.67	1.174
7.600	52.48	0.568	90.07	0.975	109.48	1.185
7.800	52.48	0.569	90.48	0.981	110.28	1.196
8.000	52.88	0.575	90.88	0.988	111.09	1.208

C = 0.2933
$\Phi = 33.26^{\circ}$

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

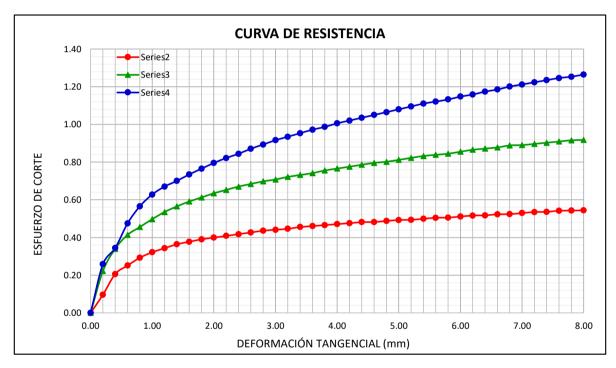
Calicata: 12 Muestra: Fecha: Set-24

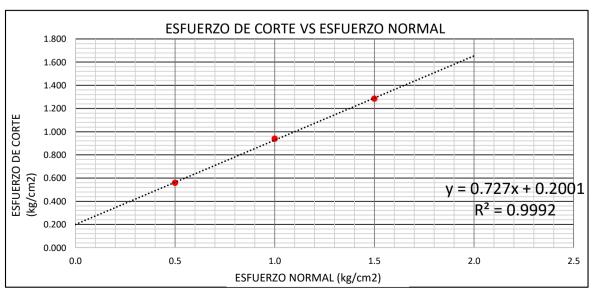
DEL ECDECIMENT	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	10	00	1	00	100	
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
DEFORMACIÓNI TANICENCIAL (mama)	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
DEFORMACIÓN TANGENCIAL (mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	9.6	0.096	22.16	0.222	25.79	0.258
0.400	20.54	0.206	33.88	0.340	34.29	0.344
0.600	24.99	0.251	41.16	0.414	47.22	0.475
0.800	29.03	0.293	45.2	0.456	56.12	0.566
1.000	31.86	0.322	49.24	0.497	62.18	0.628
1.200	33.88	0.343	52.88	0.535	66.22	0.670
1.400	35.9	0.364	55.71	0.565	69.05	0.700
1.600	37.12	0.377	58.14	0.591	72.29	0.735
1.800	38.33	0.390	60.16	0.613	75.12	0.765
2.000	39.14	0.399	62.18	0.634	77.95	0.795
2.200	39.95	0.408	63.8	0.652	80.37	0.822
2.400	40.76	0.418	65.41	0.670	82.39	0.844
2.600	41.56	0.427	66.63	0.684	84.82	0.871
2.800	42.37	0.436	67.84	0.698	86.84	0.893
3.000	42.78	0.441	68.65	0.708	88.86	0.916
3.200	43.18	0.446	69.86	0.722	90.48	0.935
3.400	43.99	0.455	70.67	0.732	92.09	0.953
3.600	44.39	0.460	71.48	0.741	93.71	0.972
3.800	44.8	0.466	72.69	0.756	94.92	0.987
4.000	45.2	0.471	73.5	0.766	96.54	1.006
4.200	45.61	0.476	74.31	0.776	97.75	1.020
4.400	46.01	0.481	75.12	0.786	98.97	1.035
4.600	46.01	0.482	75.92	0.796	100.18	1.050
4.800	46.42	0.488	76.33	0.802	101.39	1.065
5.000	46.82	0.493	77.14	0.812	102.60	1.080
5.200	46.82	0.494	77.95	0.822	103.82	1.095
5.400	47.22	0.499	78.75	0.832	105.03	1.110
5.600	47.63	0.505	79.16	0.839	105.84	1.121
5.800	47.63	0.506	79.56	0.845	106.65	1.132
6.000	48.03	0.511	80.37	0.855	107.86	1.147
6.200	48.44	0.516	81.18	0.865	108.67	1.159
6.400	48.44	0.518	81.58	0.872	109.88	1.174
6.600	48.84	0.523	81.99	0.878	110.69	1.185
6.800	48.84	0.524	82.8	0.888	111.90	1.201
7.000	49.24	0.529	82.8	0.890	112.71	1.212

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Sonte Poportemento de Angelo 2022"


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 12 Muestra: 1 Fecha: Set-24

7.200	49.65	0.535	83.2	0.897	113.52	1.223
7.400	49.65	0.536	83.61	0.903	114.33	1.235
7.600	50.05	0.542	84.01	0.909	115.14	1.246
7.800	50.05	0.543	84.41	0.916	115.54	1.253
8.000	50.05	0.544	84.41	0.918	116.35	1.265

C = 0.2001	
$\Phi = 36.02^{\circ}$	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas:

Calicata: Fecha: Muestra: Set-24

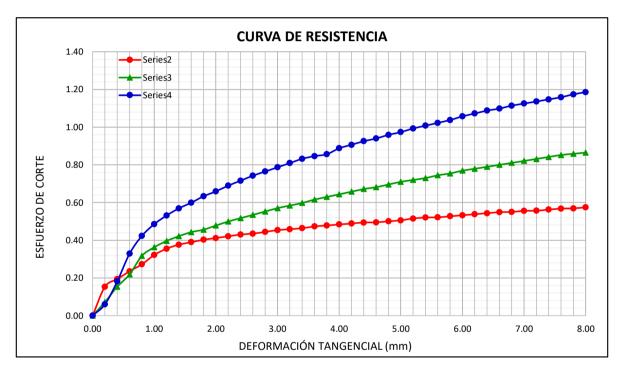
DEL EGDECIMAEN	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
AREA (cm2)	10	00	1	00	10	00
DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
	ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III
DEFORMACIÓNI TANICENCIAL (******)	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
DEFORMACIÓN TANGENCIAL (mm)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.200	15.27	0.153	7.17	0.072	5.96	0.060
0.400	19.32	0.194	15.27	0.153	18.11	0.182
0.600	23.37	0.235	21.75	0.219	32.67	0.329
0.800	27.01	0.272	31.46	0.317	41.97	0.423
1.000	31.86	0.322	35.9	0.363	48.03	0.485
1.200	35.1	0.355	39.14	0.396	52.48	0.531
1.400	37.12	0.376	41.56	0.422	56.12	0.569
1.600	38.33	0.390	43.59	0.443	58.95	0.599
1.800	39.54	0.403	44.8	0.456	62.18	0.633
2.000	40.35	0.412	46.82	0.478	64.61	0.659
2.200	41.16	0.421	48.84	0.499	67.44	0.690
2.400	41.97	0.430	50.46	0.517	69.86	0.716
2.600	42.37	0.435	52.07	0.535	72.29	0.742
2.800	43.18	0.444	53.69	0.552	74.31	0.765
3.000	43.99	0.454	55.31	0.570	76.33	0.787
3.200	44.39	0.459	56.52	0.584	78.35	0.809
3.400	44.8	0.464	57.73	0.598	80.37	0.832
3.600	45.61	0.473	59.35	0.616	81.58	0.846
3.800	46.01	0.478	60.56	0.630	82.39	0.856
4.000	46.42	0.484	61.78	0.644	85.22	0.888
4.200	46.82	0.489	62.99	0.658	86.84	0.906
4.400	47.22	0.494	64.2	0.672	88.46	0.925
4.600	47.22	0.495	65.01	0.681	89.67	0.940
4.800	47.63	0.500	66.22	0.696	91.29	0.959
5.000	48.03	0.506	67.44	0.710	92.50	0.974
5.200	48.84	0.515	68.24	0.720	94.12	0.993
5.400	49.24	0.521	69.05	0.730	95.33	1.008
5.600	49.24	0.522	70.27	0.744	96.54	1.023
5.800	49.65	0.527	71.07	0.754	97.75	1.038
6.000	50.05	0.532	72.29	0.769	99.37	1.057
6.200	50.46	0.538	73.09	0.779	100.58	1.072
6.400	50.86	0.543	73.9	0.790	101.80	1.088
6.600	51.27	0.549	74.71	0.800	102.60	1.099
6.800	51.27	0.550	75.52	0.810	103.82	1.114
7.000	51.67	0.556	76.33	0.821	104.63	1.125

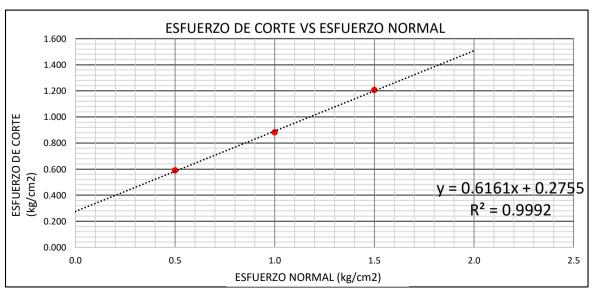
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas:

Calicata: Muestra: Set-24

7.200	51.67	0.557	77.14	0.831	105.43	1.136
7.400	52.07	0.562	77.95	0.842	106.24	1.147
7.600	52.48	0.568	78.75	0.852	107.05	1.159
7.800	52.48	0.569	79.16	0.859	108.26	1.174
8.000	52.88	0.575	79.56	0.865	109.07	1.186

C = 0.2755	
$\Phi = 31.64^{\circ}$	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

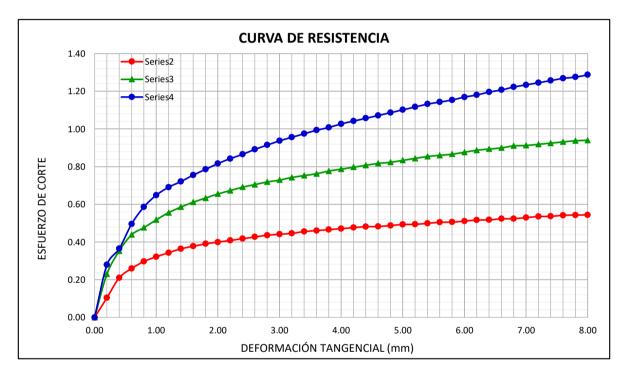
Calicata: Muestra: Fecha: Set-24

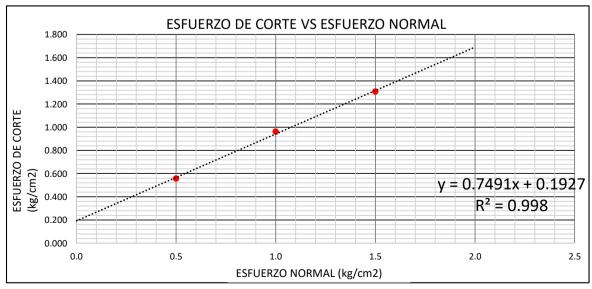
ALTURA (cm) 2.10 1.400 1	DEL ECRECIMENT	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III		
AREA (cm2)	DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino	
DENSIDAD (gr/cm3)	ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10	
HUMEDAD (%) 9.60%	AREA (cm2)	100		100		100		
ESPECIMEN SPUERZO NORMAL (kg/cm2)	DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400	
DEFORMACIÓN TANGENCIAL (mm) CORTANTE CO	HUMEDAD (%)	9.60%	9.60%	9.60%	9.60%	9.60%	9.60%	
DEFORMACIÓN TANGENCIAL (mm)	ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5	
CORTANTE CORTAINTE CORTAINTE CORTAINTE CORTAINTE (kg) (kg/cm2) (kg) (kg/cm2) (k		ESPEC	IMEN I	ESPEC	IMEN II	ESPECI	MEN III	
CORTANTIE CORTANTIE <t< td=""><td>DEFORMACIÓNI TANCENCIAL (mm)</td><td>FUERZA</td><td>ESFUERZO DE</td><td>FUERZA</td><td>ESFUERZO DE</td><td>FUERZA</td><td>ESFUERZO DE</td></t<>	DEFORMACIÓNI TANCENCIAL (mm)	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	
0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.200 10.41 0.104 22.97 0.230 27.82 0.279 0.400 20.94 0.210 35.1 0.352 36.31 0.365 0.600 25.79 0.259 43.59 0.439 49.24 0.495 0.800 29.44 0.297 47.22 0.476 58.14 0.586 1.000 31.86 0.322 51.27 0.518 64.20 0.648 1.200 33.88 0.343 54.9 0.556 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0	DEFORMACION TANGENCIAL (IIIII)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE	
0.200 10.41 0.104 22.97 0.230 27.82 0.279 0.400 20.94 0.210 35.1 0.352 36.31 0.365 0.600 25.79 0.259 43.59 0.439 49.24 0.495 0.800 29.44 0.297 47.22 0.476 58.14 0.586 1.000 31.86 0.322 51.27 0.518 64.20 0.648 1.200 33.88 0.343 54.9 0.556 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56		(kg)	(Kg/cm2)	(kg)		(kg)	(Kg/cm2)	
0.400 20.94 0.210 35.1 0.352 36.31 0.365 0.600 25.79 0.259 43.59 0.439 49.24 0.495 0.800 29.44 0.297 47.22 0.476 58.14 0.586 1.000 31.86 0.322 51.27 0.518 64.20 0.648 1.200 33.88 0.343 54.9 0.556 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0	0.000	0.00	0.000	0.00	0.000	0.00	0.000	
0.600 25.79 0.259 43.59 0.439 49.24 0.495 0.800 29.44 0.297 47.22 0.476 58.14 0.586 1.000 31.86 0.322 51.27 0.518 64.20 0.648 1.200 33.88 0.343 54.9 0.555 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37	0.200	10.41	0.104	22.97	0.230	27.82	0.279	
0.800 29.44 0.297 47.22 0.476 58.14 0.586 1.000 31.86 0.322 51.27 0.518 64.20 0.648 1.200 33.88 0.343 54.9 0.556 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78	0.400	20.94	0.210	35.1	0.352	36.31	0.365	
1.000 31.86 0.322 51.27 0.518 64.20 0.648 1.200 33.88 0.343 54.9 0.556 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18	0.600	25.79	0.259	43.59	0.439	49.24		
1.200 33.88 0.343 54.9 0.556 68.24 0.691 1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99	0.800	29.44	0.297		0.476	58.14		
1.400 35.9 0.364 57.73 0.585 71.07 0.721 1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.89 <td< td=""><td></td><td>31.86</td><td>0.322</td><td>51.27</td><td>0.518</td><td>64.20</td><td></td></td<>		31.86	0.322	51.27	0.518	64.20		
1.600 37.12 0.377 60.16 0.611 74.31 0.755 1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.83 0.460 73.5 0.762 95.73 0.993 3.800 44.8	1.200	33.88	0.343	54.9	0.556	68.24	0.691	
1.800 38.33 0.390 62.18 0.633 77.14 0.786 2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0	1.400	35.9	0.364	57.73	0.585	71.07	0.721	
2.000 39.14 0.399 64.2 0.655 79.97 0.816 2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0	1.600	37.12	0.377	60.16	0.611	74.31	0.755	
2.200 39.95 0.408 65.82 0.673 82.39 0.842 2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.800 46.01	1.800	38.33	0.390	62.18	0.633	77.14	0.786	
2.400 40.76 0.418 67.44 0.691 84.41 0.865 2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.42 <td< td=""><td>2.000</td><td>39.14</td><td>0.399</td><td>64.2</td><td>0.655</td><td>79.97</td><td></td></td<>	2.000	39.14	0.399	64.2	0.655	79.97		
2.600 41.56 0.427 68.65 0.705 86.84 0.892 2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.82 <t< td=""><td>2.200</td><td>39.95</td><td>0.408</td><td>65.82</td><td>0.673</td><td>82.39</td><td>0.842</td></t<>	2.200	39.95	0.408	65.82	0.673	82.39	0.842	
2.800 42.37 0.436 69.86 0.719 88.86 0.914 3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 <	2.400	40.76	0.418	67.44	0.691	84.41	0.865	
3.000 42.78 0.441 70.67 0.729 90.88 0.937 3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82	2.600	41.56	0.427	68.65	0.705	86.84	0.892	
3.200 43.18 0.446 71.88 0.743 92.50 0.956 3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.63 0.505 81.18 0.860 107.86 1.143 5.800 <td< td=""><td>2.800</td><td></td><td>0.436</td><td>69.86</td><td>0.719</td><td>88.86</td><td>0.914</td></td<>	2.800		0.436	69.86	0.719	88.86	0.914	
3.400 43.99 0.455 72.69 0.752 94.12 0.974 3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.44 0.516 83.2 0.887 110.69	3.000	42.78	0.441	70.67	0.729	90.88	0.937	
3.600 44.39 0.460 73.5 0.762 95.73 0.993 3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 <	3.200	43.18	0.446	71.88	0.743	92.50	0.956	
3.800 44.8 0.466 74.71 0.777 96.95 1.008 4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200		43.99	0.455		0.752	94.12	0.974	
4.000 45.2 0.471 75.52 0.787 98.56 1.027 4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400	3.600	44.39	0.460	73.5	0.762	95.73	0.993	
4.200 45.61 0.476 76.33 0.797 99.77 1.041 4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800	3.800	44.8	0.466	74.71	0.777	96.95	1.008	
4.400 46.01 0.481 77.14 0.807 100.99 1.056 4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222	4.000	45.2	0.471			98.56	1.027	
4.600 46.01 0.482 77.95 0.817 102.20 1.071 4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222		45.61			0.797	99.77	1.041	
4.800 46.42 0.488 78.35 0.823 103.41 1.086 5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222		46.01	0.481	77.14	0.807	100.99		
5.000 46.82 0.493 79.16 0.833 104.63 1.101 5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222	4.600	46.01	0.482	77.95	0.817	102.20	1.071	
5.200 46.82 0.494 79.97 0.844 105.84 1.116 5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222		46.42		78.35		103.41	1.086	
5.400 47.22 0.499 80.78 0.854 107.05 1.132 5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222			0.493	79.16				
5.600 47.63 0.505 81.18 0.860 107.86 1.143 5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222	5.200	46.82	0.494	79.97	0.844	105.84		
5.800 47.63 0.506 81.58 0.866 108.67 1.154 6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222								
6.000 48.03 0.511 82.39 0.876 109.88 1.169 6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222								
6.200 48.44 0.516 83.2 0.887 110.69 1.180 6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222						108.67		
6.400 48.44 0.518 83.61 0.893 111.90 1.196 6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222								
6.600 48.84 0.523 84.01 0.899 112.71 1.207 6.800 48.84 0.524 84.82 0.910 113.92 1.222	6.200					110.69		
6.800 48.84 0.524 84.82 0.910 113.92 1.222						111.90		
	6.600	48.84	0.523	84.01	0.899	112.71	1.207	
7.000 49.24 0.529 84.82 0.912 114.73 1.234	6.800	48.84	0.524	84.82	0.910	113.92	1.222	
	7.000	49.24	0.529	84.82	0.912	114.73	1.234	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 14 Muestra: 1 Fecha: Set-24

7.200	49.65	0.535	85.22	0.918	115.54	1.245
7.400	49.65	0.536	85.63	0.925	116.35	1.256
7.600	50.05	0.542	86.03	0.931	117.16	1.268
7.800	50.05	0.543	86.43	0.937	117.56	1.275
8.000	50.05	0.544	86.43	0.939	118.37	1.287

C = 0.1927	
$\Phi = 36.84^{\circ}$	

FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas:

Calicata: Muestra: Fecha: Set-24

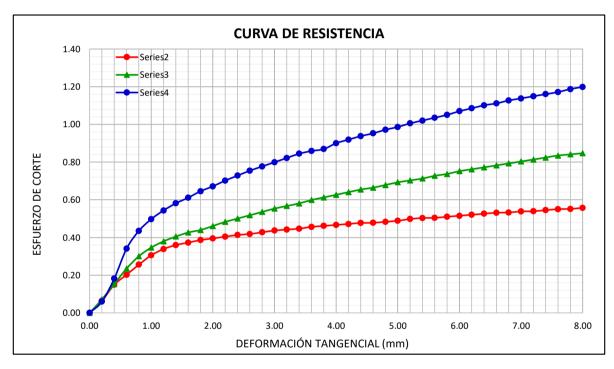
Inicio Termino Inicio Te	DEL ECDECIMAEN	ESPEC	IMEN I	ESPECIMEN II		ESPECIMEN III	
AREA (cm2)	DEL ESPECIMEN	Inicio	Termino	Inicio	Termino	Inicio	Termino
DENSIDAD (gr/cm3)	ALTURA (cm)	2.10	2.10	2.10	2.10	2.10	2.10
HUMEDAD (%) 9.60%		10	00	100		10	00
ESPLERZO NORMAL (kg/cm2)	DENSIDAD (gr/cm3)	1.400	1.400	1.400	1.400	1.400	1.400
DEFORMACIÓN TANGENCIAL (mm)		9.60%	9.60%	9.60%	9.60%	9.60%	9.60%
DEFORMACIÓN TANGENCIAL (mm)	ESFUERZO NORMAL (kg/cm2)	0	.5	1	.0	1	.5
DEFORMACIÓN TANGENCIAL (mm)							
CORTANTE	DEEODMACIÓN TANGENCIAL (mm)	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE	FUERZA	ESFUERZO DE
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.200 6.36 0.064 7.17 0.072 5.96 0.060 0.400 14.87 0.149 15.27 0.153 18.11 0.182 0.600 20.13 0.203 23.37 0.235 33.88 0.341 0.800 25.39 0.256 29.84 0.301 43.18 0.435 1.000 30.25 0.306 34.29 0.346 49.24 0.497 1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0	DEFORMACION TANGENCIAL (IIIII)	CORTANTE	CORTE	CORTANTE	CORTE	CORTANTE	CORTE
0.200 6.36 0.064 7.17 0.072 5.96 0.060 0.400 14.87 0.149 15.27 0.153 18.11 0.182 0.600 20.13 0.203 23.37 0.235 33.88 0.341 0.800 25.39 0.256 29.84 0.301 43.18 0.435 1.000 30.25 0.306 34.29 0.346 49.24 0.497 1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.954 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0		(kg)	(Kg/cm2)	(kg)	(Kg/cm2)	(kg)	(Kg/cm2)
0.400 14.87 0.149 15.27 0.153 18.11 0.182 0.600 20.13 0.203 23.37 0.235 33.88 0.341 0.800 25.39 0.256 29.84 0.301 43.18 0.435 1.000 30.25 0.306 34.29 0.346 49.24 0.497 1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.94 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.418 50.46 0.518 73.50 0.755 2.800 41.56 <td< td=""><td>0.000</td><td>0.00</td><td>0.000</td><td>0.00</td><td>0.000</td><td>0.00</td><td>0.000</td></td<>	0.000	0.00	0.000	0.00	0.000	0.00	0.000
0.600 20.13 0.203 23.37 0.235 33.88 0.341 0.800 25.39 0.256 29.84 0.301 43.18 0.435 1.000 30.25 0.306 34.29 0.346 49.24 0.497 1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 <td< td=""><td>0.200</td><td>6.36</td><td>0.064</td><td>7.17</td><td>0.072</td><td>5.96</td><td>0.060</td></td<>	0.200	6.36	0.064	7.17	0.072	5.96	0.060
0.800 25.39 0.256 29.84 0.301 43.18 0.435 1.000 30.25 0.306 34.29 0.346 49.24 0.497 1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.78 <td< td=""><td>0.400</td><td>14.87</td><td>0.149</td><td>15.27</td><td>0.153</td><td>18.11</td><td>0.182</td></td<>	0.400	14.87	0.149	15.27	0.153	18.11	0.182
1.000 30.25 0.306 34.29 0.346 49.24 0.497 1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 <td< td=""><td>0.600</td><td>20.13</td><td>0.203</td><td>23.37</td><td>0.235</td><td>33.88</td><td>0.341</td></td<>	0.600	20.13	0.203	23.37	0.235	33.88	0.341
1.200 33.48 0.339 37.52 0.380 53.69 0.543 1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18	0.800	25.39	0.256	29.84	0.301	43.18	0.435
1.400 35.5 0.360 39.95 0.405 57.33 0.581 1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 <td< td=""><td>1.000</td><td>30.25</td><td>0.306</td><td>34.29</td><td>0.346</td><td>49.24</td><td>0.497</td></td<>	1.000	30.25	0.306	34.29	0.346	49.24	0.497
1.600 36.71 0.373 41.97 0.427 60.16 0.611 1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.800 44.39 0.456 57.73 0.599 82.80 0.859 3.800 44.8	1.200		0.339	37.52	0.380	53.69	0.543
1.800 37.93 0.386 43.18 0.440 63.39 0.646 2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 45.2	1.400	35.5	0.360	39.95	0.405	57.33	0.581
2.000 38.73 0.395 45.2 0.461 65.82 0.672 2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.61	1.600	36.71	0.373	41.97	0.427	60.16	0.611
2.200 39.54 0.404 47.22 0.483 68.65 0.702 2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61	1.800	37.93	0.386	43.18	0.440	63.39	0.646
2.400 40.35 0.413 48.84 0.500 71.07 0.728 2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61	2.000	38.73	0.395	45.2	0.461	65.82	0.672
2.600 40.76 0.418 50.46 0.518 73.50 0.755 2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01	2.200	39.54	0.404	47.22	0.483	68.65	0.702
2.800 41.56 0.428 52.07 0.536 75.52 0.777 3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 47.63	2.400	40.35	0.413	48.84	0.500	71.07	0.728
3.000 42.37 0.437 53.69 0.554 77.54 0.799 3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63	2.600	40.76	0.418	50.46	0.518	73.50	0.755
3.200 42.78 0.442 54.9 0.567 79.56 0.822 3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63	2.800	41.56	0.428	52.07	0.536	75.52	0.777
3.400 43.18 0.447 56.12 0.581 81.58 0.845 3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.0	3.000	42.37	0.437	53.69	0.554	77.54	0.799
3.600 43.99 0.456 57.73 0.599 82.80 0.859 3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.65 0.532 73.09 0.783 105.03	3.200	42.78	0.442		0.567	79.56	0.822
3.800 44.39 0.461 58.95 0.613 83.61 0.869 4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.800 48.03 0.505 68.65 0.727 97.75 1.035 5.800 48.84 0.510 69.46 0.737 98.97 1.051 6.000 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.	3.400	43.18	0.447	56.12	0.581	81.58	0.845
4.000 44.8 0.467 60.16 0.627 86.43 0.900 4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 <t< td=""><td>3.600</td><td>43.99</td><td>0.456</td><td>57.73</td><td>0.599</td><td>82.80</td><td>0.859</td></t<>	3.600	43.99	0.456	57.73	0.599	82.80	0.859
4.200 45.2 0.472 61.37 0.641 88.05 0.919 4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.65 0.532 73.09 0.783 105.03 1.112 6.800	3.800	44.39	0.461	58.95	0.613	83.61	0.869
4.400 45.61 0.477 62.58 0.655 89.67 0.938 4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
4.600 45.61 0.478 63.39 0.664 90.88 0.953 4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
4.800 46.01 0.483 64.61 0.679 92.50 0.972 5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
5.000 46.42 0.489 65.82 0.693 93.71 0.986 5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
5.200 47.22 0.498 66.63 0.703 95.33 1.006 5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
5.400 47.63 0.503 67.44 0.713 96.54 1.021 5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
5.600 47.63 0.505 68.65 0.727 97.75 1.035 5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
5.800 48.03 0.510 69.46 0.737 98.97 1.051 6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
6.000 48.44 0.515 70.67 0.752 100.58 1.070 6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
6.200 48.84 0.521 71.48 0.762 101.80 1.085 6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
6.400 49.24 0.526 72.29 0.772 103.10 1.101 6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
6.600 49.65 0.532 73.09 0.783 103.82 1.112 6.800 49.65 0.533 73.9 0.793 105.03 1.127							
6.800 49.65 0.533 73.9 0.793 105.03 1.127							
7.000 50.05 0.538 74.71 0.803 105.84 1.138							
	7.000	50.05	0.538	74.71	0.803	105.84	1.138

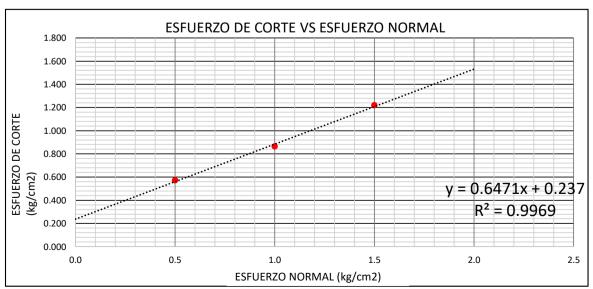
FACULTAD DE INGENIERÍA ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL

LABORATORIO DE MECÁNICA DE SUELOS

ENSAYO DE CORTE DIRECTO (NTP 339.171)

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:


Santa, Departamento de Ancash - 2022"


Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: Muestra: Set-24

7.200	50.05	0.539	75.52	0.814	106.65	1.149
7.400	50.46	0.545	76.33	0.824	107.46	1.160
7.600	50.86	0.550	77.14	0.835	108.26	1.172
7.800	50.86	0.552	77.54	0.841	109.48	1.187
8.000	51.27	0.557	77.95	0.847	110.28	1.199

C = 0.237
$\Phi = 32.91^{\circ}$

ANEXO 4 CÁLCULO DE LA CAPACIDAD PORTANTE Y ASENTAMIENTOS

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

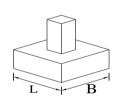
Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

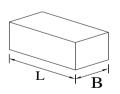
1 Muestra: 1 Set-24 Calicata: Fecha:

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc


 $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción $Q_d = S_c * i_c * C * N_c$ 2.

interna ($\emptyset = 0$).


Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$ arenosas), Cohesión (c = 0).

	DATOS GENERALES										
Ángulo d	Ángulo de Fricción16.57Cohesión0.1702 tn/m2Tipo Suelo										
	K 1.68 Tn/m3 F.S. 3 Arena Mal G										
DETERMIN	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA										
Nc	12.02	Sc	1.20	Fcd		ic	1				
Nq	4.58	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1				
Ny	1.53	Sγ	0.80	Fyd		iɣ	1				
		- 6	0.00	- 6		- 0					

Qadm=C	apacidad		B=Ancho de Zapata (m)						
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
	0.80	0.24	0.26	0.27	0.29	0.31	0.33	0.34	
	1.00	0.29	0.31	0.32	0.34	0.36	0.38	0.39	
	1.20	0.34	0.36	0.38	0.39	0.41	0.43	0.44	
Df (m)	1.40	0.39	0.41	0.43	0.44	0.46	0.48	0.50	
	1.60	0.44	0.46	0.48	0.50	0.51	0.53	0.55	
	1.80	0.50	0.51	0.53	0.55	0.56	0.58	0.60	
	2.00	0.55	0.56	0.58	0.60	0.62	0.63	0.65	

DETERMINACION DE LA CAPACIDAD PORTANTE PARA CIMIENTO CORRIDO							
							Relación L/B >= 5
Nc	12.02	Sc	1.08	Fcd		ic	1
Nq	4.58	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1
Ny	1.53	Sγ	0.92	Fyd		iγ	1

Qadm=0	Capacidad			B=A	ncho de Zapata	(m)		
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.23	0.24	0.24	0.25	0.26	0.28	0.28
	1.00	0.28	0.29	0.30	0.30	0.32	0.33	0.34
	1.20	0.33	0.34	0.35	0.35	0.37	0.38	0.39
Df (m)	1.40	0.38	0.39	0.40	0.41	0.42	0.43	0.44
	1.60	0.43	0.44	0.45	0.46	0.47	0.48	0.49
	1.80	0.49	0.49	0.50	0.51	0.52	0.53	0.54
	2.00	0.54	0.54	0.55	0.56	0.57	0.58	0.59

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 1 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

 u:
 0.25
 Es:
 1530
 Tn/m2
 If:
 112
 cm/m

 B (m)
 1.00
 1.50
 2.00
 2.50
 3.00
 3.50
 4.00

B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00					
Si (cm)		Qadm (kg/cm2)										
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01					
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01					
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02					
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03					
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04					
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07					
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15					
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22					
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29					
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36					
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55					
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73					

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

u: 0.25 Es: 1530 Tn/m2 If: 210 cm/m

B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
Si (cm)				Qadm (kg/cm	12)		
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

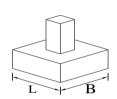
Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

2 Muestra: 1 Set-24 Calicata: Fecha:

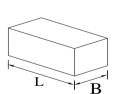
Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

 $\emptyset = \tan^{-1}(0.67 * \tan \phi)$


Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción $Q_d = S_c * i_c * C * N_c$ 2.

interna ($\emptyset = 0$).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$


arenosas), Cohesión (c = 0).

		DATOS G	ENERALES	3								
Ángulo de Fricción19.34Cohesión0.234 tn/m2Tipo Suelo												
(1.68 Tn/m3	F.	S.	3	Arena Ma	l Graduada						
ACION DE L	A CAPACID	AD PORTAN	ITE PARA	ZAPATA CUADR	ADA	Relación L/B =1						
14.23	Sc	1.20	Fcd		ic	1						
6.00	Sq	0.00	Fqd		iq	1						
Ny 2.55 Sy 0.80 Fyd iy												
	14.23 6.00	1.68 Tn/m3 ACION DE LA CAPACID 14.23 Sc 6.00 Sq	Fricción 19.34 Cohe 1.68 Tn/m3 F.	E Fricción 19.34 Cohesión K 1.68 Tn/m3 F.S. ACION DE LA CAPACIDAD PORTANTE PARA 14.23 Sc 1.20 Fcd 6.00 Sq 0.00 Fqd	ACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADR 14.23 Sc 1.20 Fcd No considerados Teoría - Cimentación Superficial	E Fricción 19.34 Cohesión 0.234 tn/m2 Tipo X 1.68 Tn/m3 F.S. 3 Arena Ma ACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA 14.23 Sc 1.20 Fcd No considerados Teoría - Cimentación Superficial iq						

Qadm=C	Qadm=Capacidad		B=Ancho de Zapata (m)										
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00					
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50					
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56					
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63					
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70					
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77					
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83					
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90					

DETERMIN	ACION DE LA	CAPACIDA	<u>D PORTANTI</u>	E PARA CII	MIENTO CORRIE	00	Relación L/B >= 5
Nc	14.23	Sc	1.08	Fcd		ic	1
Nq	6.00	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	1 1/1	1
Ny	2.55	Sγ	0.92	Fyd		iy	1

Qadm=0	Qadm=Capacidad			B= <i>I</i>	ncho de Zapata	(m)		
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
0.80		0.31	0.32	0.33	0.35	0.37	0.39	0.40
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67
1.80		0.64	0.66	0.67	0.68	0.70	0.72	0.74
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80

2.00

2.91

1.94

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 2 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u: 0.25 Es: **1530** Tn/m2 lf: 112 cm/m 1.00 1.50 2.00 2.50 3.00 3.50 4.00 B (m) Si (cm) Qadm (kg/cm2) 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.08 0.06 0.04 0.03 0.12 0.05 0.03 0.08 0.04 0.15 0.10 0.07 0.06 0.05 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.40 0.22 0.60 0.87 0.58 0.44 0.35 0.29 0.25 0.29 1.17 0.78 0.58 0.39 0.33 0.47 0.80 0.97 1.46 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

1.46

0.97

0.83

0.73

u:	0.25		Es:	1530	Tn/m2	lf:	210
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
Si (cm)		•		Qadm (kg/cn	n2)		
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Provi

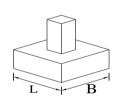
Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

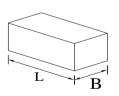
Calicata: 3 Muestra: 1 Fecha: Set-24

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc


1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción interpa ($Q_d = Q_s$)

 $interna (\emptyset = 0).$


 $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$ Para suelos friccionantes (gravas, arenas y gravas-arenosas), Cohesión (c = 0).

	DATOS GENERALES												
Ángulo d	Ángulo de Fricción19.34Cohesión0.1369 tn/m2Tipo Suelo												
	K 1.68 Tn/m3 F.S. 3 Arena Mal 0												
DETERMIN	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA												
Nc	14.23	Sc	1.20	Fcd		ic	1						
Nq	6.00	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1						
Ny	2.55	Sγ	0.80	Fyd		iγ	1						

Qadm=C	Qadm=Capacidad		B=Ancho de Zapata (m)										
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00					
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50					
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56					
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63					
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70					
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77					
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83					
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90					

DETERM	NACION DE LA	CAPACIDA	D PORTANT	E PARA CII	MIENTO CORRID	00	Relación
							L/B >= 5
Nc	14.23	Sc	1.08	Fcd		ic	1
Nq	6.00	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1
Ny	2.55	Sy	0.92	Fyd		iɣ	1

Qadm=0	Qadm=Capacidad		B=Ancho de Zapata (m)									
Admisible	Admisible (kg/cm2)		0.80	1.00	1.20	1.50	1.80	2.00				
0.80		0.31	0.32	0.33	0.35	0.37	0.39	0.40				
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47				
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53				
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60				
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67				
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74				
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80				

2.00

2.91

1.94

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 3 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u: 0.25 Es: **1530** Tn/m2 lf: 112 cm/m 1.00 1.50 2.00 2.50 3.00 3.50 4.00 B (m) Si (cm) Qadm (kg/cm2) 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.08 0.06 0.04 0.03 0.12 0.05 0.03 0.08 0.04 0.15 0.10 0.07 0.06 0.05 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.40 0.22 0.60 0.87 0.58 0.44 0.35 0.29 0.25 0.29 1.17 0.78 0.58 0.39 0.33 0.47 0.80 0.97 1.46 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

1.46

0.97

0.83

0.73

u:	0.25		Es:	1530	Tn/m2	lf:	210	cm/n
					_			_
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	
Si (cm)				Qadm (kg/cr	m2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

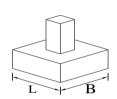
Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 4 Muestra: 1 Fecha: Set-24

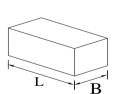
Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \Phi)$


2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción interna ($\emptyset = 0$).

3. $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$

Para suelos friccionantes (gravas, arenas y gravasarenosas), Cohesión (c = 0).


ø <mark>25</mark> p.e <mark>1.68</mark> c 0.1347

			DATOS G	ENERALES	_		
Ángulo d	le Fricción	17.35	Cohe	sión	0.1347 tn/m2	Tipo	Suelo
	K	1.68 Tn/m3	F.	S.	3	Arena Mal	Graduada
DETERMIN	ACION DE L	A CAPACID	AD PORTAN	ITE PARA Z	APATA CUADR	ADA	Relación L/B =1
Nc	12.60	Sc	1.20	Fcd		ic	1
Nq	4.94	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1
Ny	1.78	Sγ	0.80	Fyd		iɣ	1

Qadm=0	Capacidad			B= <i>A</i>	Incho de Zapata	(m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.26	0.28	0.30	0.32	0.34	0.36	0.38
	1.00	0.32	0.34	0.36	0.38	0.40	0.42	0.44
	1.20	0.37	0.39	0.41	0.43	0.45	0.47	0.49
Df (m)	1.40	0.43	0.45	0.47	0.49	0.51	0.53	0.55
	1.60	0.48	0.50	0.52	0.54	0.56	0.58	0.60
	1.80	0.54	0.56	0.58	0.60	0.62	0.64	0.66
	2.00	0.59	0.61	0.63	0.65	0.67	0.69	0.71

DETERMIN	ACION DE LA	CAPACIDA	D PORTANT	E PARA CIM	IENTO CORRIC	00	Dala si św
							Relación L/B >= 5
Nc	12.60	Sc	1.08	Fcd		ic	1
Nq	4.94	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1
Ny	1.78	Sγ	0.92	Fyd		iγ	1

Qadm=0	Capacidad			B=#	Ancho de Zapata	(m)		
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.25	0.26	0.27	0.28	0.29	0.30	0.31
	1.00	0.30	0.31	0.32	0.33	0.35	0.36	0.37
	1.20	0.36	0.37	0.38	0.39	0.40	0.41	0.42
Df (m)	1.40	0.41	0.42	0.43	0.44	0.46	0.47	0.48
	1.60	0.47	0.48	0.49	0.50	0.51	0.52	0.53
	1.80	0.53	0.53	0.54	0.55	0.57	0.58	0.59
	2.00	0.58	0.59	0.60	0.61	0.62	0.64	0.64

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

2.91

1.94

2.00

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 4 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u: 0.25 Es: **1530** Tn/m2 lf: 112 cm/m 1.00 1.50 2.00 2.50 3.00 3.50 4.00 B (m) Si (cm) Qadm (kg/cm2) 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.08 0.06 0.04 0.03 0.12 0.05 0.03 0.08 0.04 0.15 0.10 0.07 0.06 0.05 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.40 0.22 0.60 0.87 0.58 0.44 0.35 0.29 0.25 0.29 1.17 0.78 0.58 0.39 0.33 0.47 0.80 0.97 1.46 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

1.46

0.97

0.83

0.73

u:	0.25		Es:	1530	Tn/m2	lf:	210	cm/n
					_			_
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	
Si (cm)				Qadm (kg/cr	m2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

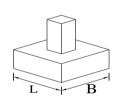
Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 8 Muestra: 1 Fecha: Set-24

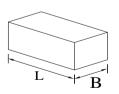
Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$


2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción interna ($\emptyset = 0$).

3. $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$

Para suelos friccionantes (gravas, arenas y gravasarenosas), Cohesión (c = 0).


ø 23.94 p.e 1.68

	DATOS GENERALES												
Ángulo d	Ángulo de Fricción16.57Cohesión0.1702 tn/m2Tipo Suelo												
	K 1.68 Tn/m3 F.S. 3 Arena Mal G												
DETERMIN	ACION DE L	A CAPACID	AD PORTAN	TE PARA	ZAPATA CUADR	ADA	Relación L/B =1						
Nc	12.02	Sc	1.20	Fcd		ic	1						
Nq	4.58	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1						
Ny	1.53	Sγ	0.80	Fyd		iɣ	1						

Qadm=C	apacidad		B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00				
	0.80	0.24	0.26	0.27	0.29	0.31	0.33	0.34				
	1.00	0.29	0.31	0.32	0.34	0.36	0.38	0.39				
	1.20	0.34	0.36	0.38	0.39	0.41	0.43	0.44				
Df (m)	1.40	0.39	0.41	0.43	0.44	0.46	0.48	0.50				
	1.60	0.44	0.46	0.48	0.50	0.51	0.53	0.55				
	1.80	0.50	0.51	0.53	0.55	0.56	0.58	0.60				
	2.00	0.55	0.56	0.58	0.60	0.62	0.63	0.65				

DETERMIN	ACION DE LA	CAPACIDA	D PORTANTI	E PARA CIM	IENTO CORRID	0	Relación
							L/B >= 5
Nc	12.02	Sc	1.08	Fcd		ic	1
Nq	4.58	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1
Ny	1.53	Sy	0.92	Fyd		iγ	1

Qadm=0	Capacidad			B=A	ncho de Zapata	(m)		
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.23	0.24	0.24	0.25	0.26	0.28	0.28
	1.00	0.28	0.29	0.30	0.30	0.32	0.33	0.34
	1.20	0.33	0.34	0.35	0.35	0.37	0.38	0.39
Df (m)	1.40	0.38	0.39	0.40	0.41	0.42	0.43	0.44
	1.60	0.43	0.44	0.45	0.46	0.47	0.48	0.49
	1.80	0.49	0.49	0.50	0.51	0.52	0.53	0.54
	2.00	0.54	0.54	0.55	0.56	0.57	0.58	0.59

2.00

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Proyecto:

Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

1.94

8 Muestra: Set-24 Calicata: 1 Fecha:

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

112 u: 0.25 Es: **1530** Tn/m2 cm/m 3.00 1.00 1.50 2.00 4.00 B (m) 2.50 3.50 Qadm (kg/cm2) Si (cm) 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.06 0.04 0.03 0.02 0.02 0.01 0.04 0.02 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.08 0.04 0.03 0.12 0.06 0.05 0.03 0.08 0.15 0.05 0.04 0.10 0.07 0.06 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.40 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.22 0.87 0.58 0.44 0.35 0.29 0.25 0.60 1.17 0.78 0.58 0.47 0.39 0.33 0.29 0.80 1.46 0.97 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50 2.91 0.97 0.73

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

0.83

1.46

u:	0.25		Es:	1530	Tn/m2	lf:	210	cm/r
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	7
Si (cm)	0.00	0.00		Qadm (kg/cn		1.00	2.00	-
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	7
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	7

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

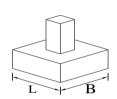
Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

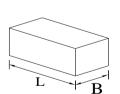
Calicata: 5 Muestra: 1 Fecha: Set-24

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc


 $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción $Q_d = S_c * i_c * C * N_c$ 2.

interna ($\emptyset = 0$).


Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$ arenosas), Cohesión (c = 0).

			DATOS G	ENERALES	1							
Ángulo d	Ángulo de Fricción22.50Cohesión0.0946 tn/m2Tipo Suelo											
	K 1.68 Tn/m3 F.S. 3 Arena Mal G											
DETERMIN	ACION DE L	A CAPACID	AD PORTAN	ITE PARA	ZAPATA CUADR	ADA	Relación L/B =1					
Nc	17.46	Sc	1.20	Fcd		ic	1					
Nq	8.23	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1					
Ny												

Qadm=C	apacidad	B=Ancho de Zapata (m)										
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00				
	0.80	0.47	0.52	0.57	0.62	0.67	0.72	0.77				
	1.00	0.56	0.61	0.66	0.71	0.76	0.81	0.86				
	1.20	0.65	0.70	0.75	0.80	0.85	0.90	0.95				
Df (m)	1.40	0.74	0.79	0.84	0.89	0.94	0.99	1.04				
	1.60	0.84	0.89	0.94	0.99	1.04	1.09	1.13				
	1.80	0.93	0.98	1.03	1.08	1.13	1.18	1.23				
	2.00	1.02	1.07	1.12	1.17	1.22	1.27	1.32				

DETERMINACION DE LA CAPACIDAD PORTANTE PARA CIMIENTO CORRIDO									
1.09	Fcd		ic	1					
0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1					
0.92	Fyd		iɣ	1					
-	0.00	0.00 Fqd	0.00 Fqd No considerados Teoría - Cimentación Superficial	0.00 Fqd No considerados Teoría - iq					

Qadm=0	Capacidad			B= <i>A</i>	ncho de Zapata	(m)		
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.44	0.46	0.48	0.51	0.54	0.57	0.60
	1.00	0.53	0.55	0.58	0.60	0.63	0.67	0.69
	1.20	0.62	0.64	0.67	0.69	0.72	0.76	0.78
Df (m)	1.40	0.71	0.74	0.76	0.78	0.82	0.85	0.87
	1.60	0.81	0.83	0.85	0.87	0.91	0.94	0.97
	1.80	0.90	0.92	0.94	0.97	1.00	1.04	1.06
	2.00	0.99	1.01	1.04	1.06	1.09	1.13	1.15

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

2.91

1.94

2.00

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 5 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u: 0.25 Es: **1530** Tn/m2 lf: 112 cm/m 1.00 1.50 2.00 2.50 3.00 3.50 4.00 B (m) Si (cm) Qadm (kg/cm2) 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.12 0.08 0.06 0.04 0.03 0.05 0.03 0.08 0.15 0.07 0.05 0.04 0.10 0.06 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.40 0.87 0.29 0.22 0.60 0.58 0.44 0.35 0.25 0.29 1.17 0.78 0.58 0.39 0.33 0.47 0.80 0.97 1.46 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

1.46

0.97

0.83

0.73

u:	0.25		Es:	1530	Tn/m2	lf:	210	cn
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	7
Si (cm)				Qadm (kg/cı	m2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa, Provi

Departamento de Ancash - 2022"

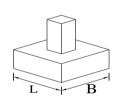
Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 6 Muestra: 1 Fecha: Set-24

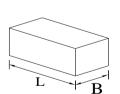
Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$


2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción interpa ($Q_d = Q_s$)

 $interna (\emptyset = 0).$

Para suelos friccionantes (gravas, arenas y gravasarenosas), Cohesión (c = 0).


ø <mark>27.65</mark> p.e <mark>1.68</mark> c <mark>0.166</mark>

	DATOS GENERALES											
Ángulo de Fricción 19.34 Cohesión 0.166 tn/m2 Tipo S												
K 1.68 Tn/m3 F.S. 3 Arena Mal 0												
D PORTAN	TE PARA Z	APATA CUADR	ADA	Relación L/B =1								
1.20	Fcd		ic	1								
0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1								
0.80	Fyd		iɣ	1								
_	1.20 0.00	F.S. D PORTANTE PARA Z 1.20 Fcd 0.00 Fqd	F.S. 3 D PORTANTE PARA ZAPATA CUADR 1.20 Fcd 0.00 Fqd No considerados Teoría - Cimentación Superficial	F.S. 3 Arena Mal D PORTANTE PARA ZAPATA CUADRADA 1.20 Fcd 0.00 Fqd No considerados Teoría - iq Cimentación Superficial								

Qadm=C	Capacidad	B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	1.00 1.50 2.00 2.50 3.00 3.50									
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50			
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56			
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63			
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70			
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77			
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83			
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90			

DETERMINACION DE LA CAPACIDAD PORTANTE PARA CIMIENTO CORRIDO										
Nc	14.23	Sc	1.08	Fcd		ic	1			
Nq	6.00	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1			
Ny	2.55	Sy	0.92	Fγd		iγ	1			

Qadm=0	Capacidad		B=Ancho de Zapata (m)									
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00				
	0.80	0.31	0.32	0.33	0.35	0.37	0.39	0.40				
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47				
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53				
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60				
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67				
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74				
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80				

2.00

2.91

1.94

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 6 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u: 0.25 Es: **1530** Tn/m2 lf: 112 cm/m 1.00 1.50 2.00 2.50 3.00 3.50 4.00 B (m) Si (cm) Qadm (kg/cm2) 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.08 0.06 0.04 0.03 0.12 0.05 0.03 0.08 0.04 0.15 0.10 0.07 0.06 0.05 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.40 0.22 0.60 0.87 0.58 0.44 0.35 0.29 0.25 0.29 1.17 0.78 0.58 0.39 0.33 0.47 0.80 0.97 1.46 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

1.46

0.97

0.83

0.73

u:	0.25		Es:	1530	Tn/m2	lf:	210
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
Si (cm)				Qadm (kg/cn	n2)		
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

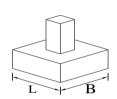
Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 7 Muestra: 1 Fecha: Set-24

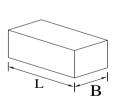
Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$


2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Ángulo de fricción interpa ($Q_d = Q_s$)

 $interna (\emptyset = 0).$

. $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$ Para suelos friccionantes (gravas, arenas y gravas-arenosas), Cohesión (c = 0).


ø 27.65 p.e 1.68 c 0.0827

	DATOS GENERALES												
Ángulo d	le Fricción	19.34	Cohe	sión	0.0827 tn/m2	Tipo	Suelo						
	K 1.68 Tn/m3 F.S. 3 Arena Mal												
DETERMIN	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA												
Nc	14.23	Sc	1.20	Fcd		ic	1						
Nq	6.00	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1						
Ny	2.55	Sy	0.80	Fyd		iɣ	1						

Qadm=C	Capacidad	B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	1.00 1.50 2.00 2.50 3.00 3.50									
	0.80	0.33	0.35	0.38	0.41	0.44	0.47	0.50			
	1.00	0.39	0.42	0.45	0.48	0.51	0.54	0.56			
	1.20	0.46	0.49	0.52	0.55	0.57	0.60	0.63			
Df (m)	1.40	0.53	0.56	0.58	0.61	0.64	0.67	0.70			
	1.60	0.59	0.62	0.65	0.68	0.71	0.74	0.77			
	1.80	0.66	0.69	0.72	0.75	0.78	0.80	0.83			
	2.00	0.73	0.76	0.79	0.81	0.84	0.87	0.90			

DETERMIN	ACION DE LA	CAPACIDA	D PORTANT	E PARA CIM	IENTO CORRIC	00	Dala si św
							Relación L/B >= 5
Nc	14.23	Sc	1.08	Fcd		ic	1
Nq	6.00	Sq	0.00	Fqd	No considerados Teoría - Cimentación Superficial	iq	1
Ny	2.55	Sγ	0.92	Fyd		iγ	1

Qadm=0	Capacidad		B=Ancho de Zapata (m)									
Admisible	e (kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00				
	0.80	0.31	0.32	0.33	0.35	0.37	0.39	0.40				
	1.00	0.38	0.39	0.40	0.41	0.43	0.45	0.47				
	1.20	0.44	0.46	0.47	0.48	0.50	0.52	0.53				
Df (m)	1.40	0.51	0.52	0.54	0.55	0.57	0.59	0.60				
	1.60	0.58	0.59	0.60	0.62	0.64	0.66	0.67				
	1.80	0.64	0.66	0.67	0.68	0.70	0.72	0.74				
	2.00	0.71	0.72	0.74	0.75	0.77	0.79	0.80				

2.00

2.91

1.94

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACI{ON DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Santa,

Proyecto: Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 7 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u: 0.25 Es: **1530** Tn/m2 lf: 112 cm/m 1.00 1.50 2.00 2.50 3.00 3.50 4.00 B (m) Qadm (kg/cm2) Si (cm) 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.04 0.03 0.02 0.02 0.02 0.01 0.04 0.09 0.06 0.04 0.03 0.03 0.02 0.02 0.06 0.08 0.06 0.04 0.03 0.12 0.05 0.03 0.08 0.05 0.04 0.15 0.10 0.07 0.06 0.04 0.10 0.29 0.19 0.15 0.12 0.10 0.08 0.07 0.20 0.58 0.39 0.29 0.23 0.19 0.17 0.15 0.40 0.22 0.60 0.87 0.58 0.44 0.35 0.29 0.25 0.29 1.17 0.78 0.58 0.39 0.33 0.47 0.80 0.97 1.46 0.73 0.58 0.49 0.42 0.36 1.00 2.19 1.46 1.09 0.87 0.73 0.62 0.55 1.50

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

1.17

1.46

0.97

0.83

0.73

u:	0.25		Es:	1530	Tn/m2	lf:	210	cm/m
								_
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	
Si (cm)				Qadm (kg/cn	n2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan
Calicata: 9 Muestra: 1 Fecha: Set-24

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de

 $Q_d = S_c * \iota_c * C * N_c$ fricción interna (Ø = 0).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_\gamma * i_\gamma * y_2 * B' * N_\gamma$ arenasas) Cohesión (C = 0)

 $= \iota_q * y_1 * \mathcal{D}_f * \mathcal{N}_q + 0.5 * S_\gamma * \iota_\gamma * y_2 * B * \mathcal{N}_\gamma$ arenosas), Cohesión (c = 0).

ø 26.8 p.e 1.68 c 0

DATOS GENERALES										
Ángulo de Fricción18.70Cohesión0 tn/m2Tipo S										
K	K 1.68 Tn/m3 F.S. 3 Arena Ma						Graduada			
DETERMINA	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA									
Nc	13.68	Sc	1.20	Fcd	No considerados	ic	1			
Nq	5.63	Sq	0.00	Fqd	Teoría - Cimentación	iq	1			
Ny	2.28	Sγ	Fyd	Superficial	iγ	1				

Qadm=Ca	apacidad	B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00			
	0.80	0.30	0.33	0.35	0.38	0.41	0.43	0.46			
	1.00	0.37	0.39	0.42	0.44	0.47	0.49	0.52			
	1.20	0.43	0.45	0.48	0.51	0.53	0.56	0.58			
Df (m)	1.40	0.49	0.52	0.54	0.57	0.59	0.62	0.65			
	1.60	0.56	0.58	0.61	0.63	0.66	0.68	0.71			
1.80		0.62	0.64	0.67	0.69	0.72	0.75	0.77			
	2.00	0.68	0.71	0.73	0.76	0.78	0.81	0.83			

DETERMINACION DE LA CAPACIDAD PORTANTE PARA CIMIENTO CORRIDO										
Nc	13.68	Sc	1.08	Fcd	No considerados	ic	1			
Nq	5.63	Sq	0.00	Fqd	Teoría - Cimentación	iq	1			
Ny	2.28	Sγ	0.92	Fyd	Superficial	iɣ	1			

Qadm=C	apacidad		B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00				
	0.80	0.29	0.30	0.31	0.32	0.34	0.36	0.37				
	1.00	0.35	0.36	0.37	0.39	0.40	0.42	0.43				
	1.20	0.41	0.43	0.44	0.45	0.47	0.48	0.50				
Df (m)	1.40	0.48	0.49	0.50	0.51	0.53	0.55	0.56				
	1.60	0.54	0.55	0.56	0.57	0.59	0.61	0.62				
1.80		0.60	0.61	0.63	0.64	0.66	0.67	0.68				
	2.00	0.67	0.68	0.69	0.70	0.72	0.74	0.75				

Localización:

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Set-24 Calicata: Muestra: Fecha:

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	If:	112	cm/m
								_
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	1
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	1
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	1
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

u:	0.25		Es:	1530	Tn/m2	lf:	210
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
Si (cm)			Q	adm (kg/cm	2)		
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022" Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: Set-24 Calicata: Muestra: 1 Fecha:

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de 2. $Q_d = S_c * i_c * C * N_c$

fricción interna ($\emptyset = 0$).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_\gamma * i_\gamma * y_2 * B' * N_\gamma$

arenosas), Cohesión (c = 0).

DATOS GENERALES										
Ángulo de Fricción18.06Cohesión0 tn/m2Tipo Suelo										
K	K 1.68 Tn/m3 F.S. 3 Arena Mal									
DETERMINA	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA									
Nc	13.15	Sc	1.20	Fcd	No considerados	ic	1			
Nq	5.29	Sq	0.00	Fqd	Teoría - Cimentación	iq	1			
Nγ	2.03	Sγ	0.80	Fyd	Superficial	iɣ	1			

Qadm=Ca	apacidad	B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00			
	0.80	0.26	0.28	0.30	0.32	0.34	0.37	0.39			
	1.00	0.32	0.34	0.36	0.38	0.40	0.42	0.44			
	1.20	0.37	0.39	0.41	0.43	0.45	0.47	0.50			
Df (m)	1.40	0.42	0.45	0.47	0.49	0.51	0.53	0.55			
	1.60	0.48	0.50	0.52	0.54	0.56	0.58	0.60			
1.80		0.53	0.55	0.58	0.60	0.62	0.64	0.66			
	2.00	0.59	0.61	0.63	0.65	0.67	0.69	0.71			

DETERMIN	IACION DE LA C	CAPACIDAD	PORTANTE	PARA CIM	IENTO CORRI	DO	Relación	
<u> </u>								
Nc	13.15	Sc	1.08	Fcd	No considerados	ic	1	
Nq	5.29	Sq	0.00	Fqd	Teoría - Cimentación	iq	1	
Ny	2.03	Sγ	0.92	Fyd	Superficial	iγ	1	

Qadm=C	apacidad	B=Ancho de Zapata (m)									
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00			
	0.80	0.25	0.26	0.27	0.28	0.29	0.31	0.31			
	1.00	0.30	0.31	0.32	0.33	0.35	0.36	0.37			
	1.20	0.36	0.37	0.38	0.39	0.40	0.41	0.42			
Df (m)	1.40	0.41	0.42	0.43	0.44	0.45	0.47	0.48			
	1.60	0.47	0.48	0.49	0.49	0.51	0.52	0.53			
1.80		0.52	0.53	0.54	0.55	0.56	0.58	0.59			
	2.00	0.58	0.58	0.59	0.60	0.62	0.63	0.64			

Localización:

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 10 Muestra: 1 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	If:	112	cm/m
								_
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	1
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	1
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	1
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

u:	0.25		Es:	1530	Tn/m2	lf:	210	cr
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	7
Si (cm)		•	Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	1
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	1
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022" Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: 2 Set-24 Calicata: Muestra: Fecha:

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de 2. $Q_d = S_c * i_c * C * N_c$

fricción interna ($\emptyset = 0$).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$

arenosas), Cohesión (c = 0).

			DATOS GEN	IERALES				
Ángulo de	Fricción	18.70 Cohesión			0 tn/m2	Tipo Suelo		
K	K 1.60 Tn/m3 F.S.			3	Arena Mal Graduada			
DETERMINA	CION DE LA	CAPACIDAI) PORTANT	E PARA ZA	PATA CUAD	RADA	Relación L/B =1	
Nc	13.68	Sc	1.20	Fcd	No considerados	ic	1	
Nq	5.63	Sq	0.00	Fqd	Teoría - Cimentación	iq	1	
Ny	2.28	Sγ	0.80	Fγd	Superficial	iɣ	1	

Qadm=C	apacidad	B=Ancho de Zapata (m)								
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00		
	0.80	0.29	0.31	0.34	0.36	0.39	0.41	0.43		
	1.00	0.35	0.37	0.40	0.42	0.45	0.47	0.49		
	1.20	0.41	0.43	0.46	0.48	0.51	0.53	0.55		
Df (m)	1.40	0.47	0.49	0.52	0.54	0.57	0.59	0.61		
	1.60	0.53	0.55	0.58	0.60	0.63	0.65	0.67		
	1.80	0.59	0.61	0.64	0.66	0.69	0.71	0.73		
	2.00	0.65	0.67	0.70	0.72	0.75	0.77	0.79		

DETERMINA	CION DE LA C	CAPACIDAD	PORTANTE	PARA CIMI	ENTO CORR	IDO .	Relación L/B >= 5
Nc	13.68	Sc	1.08	Fcd	No considerados	ic	1
Nq	5.63	Sq	0.00	Fqd	Teoría - Cimentación	iq	1
Ny	2.28	Sγ	0.92	Fγd	Superficial	iγ	1

Qadm=Capacidad Admisible (kg/cm2)		B=Ancho de Zapata (m)									
		0.60	0.80	1.00	1.20	1.50	1.80	2.00			
	0.80	0.27	0.28	0.30	0.31	0.32	0.34	0.35			
	1.00	0.33	0.34	0.36	0.37	0.38	0.40	0.41			
	1.20	0.39	0.40	0.42	0.43	0.44	0.46	0.47			
Df (m)	1.40	0.45	0.46	0.48	0.49	0.50	0.52	0.53			
	1.60	0.51	0.52	0.54	0.55	0.56	0.58	0.59			
	1.80	0.57	0.58	0.60	0.61	0.62	0.64	0.65			
	2.00	0.63	0.65	0.66	0.67	0.68	0.70	0.71			

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 11 Muestra: 2 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	lf:	112	cm/m
								_
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA CIMIENTO CORRIDO

u:	0.25		Es:	1530	Tn/m2	lf:	210	cn
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	7
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022" Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: 2 Set-24 Calicata: Muestra: Fecha:

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de 2. $Q_d = S_c * i_c * C * N_c$

fricción interna ($\emptyset = 0$).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$

			DATOS GEN	IERALES			
Ángulo de	Fricción	21.54	Cohe	sión	0 tn/m2	Tipo	Suelo
K		1.68 Tn/m3	F.	S.	3	Arena Mal	Graduada
DETERMINA	CION DE LA	CAPACIDAL) PORTANT	E PARA ZA	PATA CUAD	RADA	Relación L/B =1
Nc	16.38	Sc	1.20	Fcd	No considerados	ic	1
Nq	7.46	Sq	0.00	Fqd	Teoría - Cimentación	iq	1
Ny	3.75	Sγ	0.80	Fγd	Superficial	iγ	1

Qadm=Ca	apacidad			B=An	cho de Zapat	a (m)		
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.42	0.46	0.50	0.54	0.59	0.63	0.67
	1.00	0.50	0.54	0.59	0.63	0.67	0.71	0.75
	1.20	0.59	0.63	0.67	0.71	0.75	0.80	0.84
Df (m)	1.40	0.67	0.71	0.75	0.80	0.84	0.88	0.92
	1.60	0.75	0.79	0.84	0.88	0.92	0.96	1.01
	1.80	0.84	0.88	0.92	0.96	1.00	1.05	1.09
	2.00	0.92	0.96	1.00	1.05	1.09	1.13	1.17

DETERMINA	CION DE LA C	APACIDAD	PORTANTE	PARA CIMI	ENTO CORRI	DO	Relación
			_				L/B >= 5
Nc	16.38	Sc	1.09	Fcd	No considerados	ic	1
Nq	7.46	Sq	0.00	Fqd	Teoría - Cimentación	iq	1
Ny	3.75	Sγ	0.92	Fyd	Superficial	iγ	1

Qadm=C	apacidad			B=An	cho de Zapat	a (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.39	0.41	0.43	0.45	0.48	0.51	0.53
	1.00	0.48	0.50	0.51	0.53	0.56	0.59	0.61
	1.20	0.56	0.58	0.60	0.62	0.65	0.68	0.69
Df (m)	1.40	0.64	0.66	0.68	0.70	0.73	0.76	0.78
	1.60	0.73	0.75	0.77	0.78	0.81	0.84	0.86
	1.80	0.81	0.83	0.85	0.87	0.90	0.93	0.95
	2.00	0.89	0.91	0.93	0.95	0.98	1.01	1.03

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: 12 Muestra: 2 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	lf:	112	cm/m
			•	1				_
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

u:	0.25		Es:	1530	Tn/m2	lf:	210	С
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	1
Si (cm)			Q	adm (kg/cm	12)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022" Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: 2 Set-24 Calicata: Muestra: Fecha:

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de 2. $Q_d = S_c * i_c * C * N_c$

fricción interna ($\emptyset = 0$).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_{\gamma} * i_{\gamma} * y_2 * B' * N_{\gamma}$

			DATOS GEN	IERALES			
Ángulo de	Fricción	21.54	Cohe	esión	0 tn/m2	Tipo	Suelo
K		1.68 Tn/m3	F.	S.	3	Arena Mal Graduad	
DETERMINA	CION DE LA	CAPACIDAI) PORTANI	E PARA ZA	APATA CUAD	RADA	Relación L/B =1
Nc	16.38	Sc	1.20	Fcd	No considerados	ic	1
Nq	7.46	Sq	0.00	Fqd	Teoría - Cimentación	iq	1
Ny	3.75	Sγ	0.80	Fyd	Superficial	iγ	1

Qadm=Ca	apacidad	B=Ancho de Zapata (m)										
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00				
	0.80	0.39	0.42	0.46	0.50	0.54	0.58	0.62				
	1.00	0.46	0.50	0.54	0.58	0.62	0.66	0.70				
	1.20	0.54	0.58	0.62	0.66	0.70	0.73	0.77				
Df (m)	1.40	0.62	0.66	0.70	0.73	0.77	0.81	0.85				
	1.60	0.69	0.73	0.77	0.81	0.85	0.89	0.93				
1.	1.80	0.77	0.81	0.85	0.89	0.93	0.97	1.00				
	2.00	0.85	0.89	0.93	0.97	1.00	1.04	1.08				

DETERMINA	CION DE LA C	APACIDAD	PORTANTE	PARA CIMI	ENTO CORRI	DO	Relación
							L/B >= 5
Nc	16.38	Sc	1.09	Fcd	No considerados	ic	1
Nq	7.46	Sq	0.00	Fqd	Teoría - Cimentación	iq	1
Ny	3.75	Sγ	0.92	Fγd	Superficial	iγ	1

Qadm=Ca	apacidad			B=An	cho de Zapat	a (m)		
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80	2.00
	0.80	0.36	0.38	0.40	0.42	0.44	0.47	0.49
	1.00	0.44	0.46	0.47	0.49	0.52	0.55	0.56
	1.20	0.52	0.53	0.55	0.57	0.60	0.62	0.64
Df (m)	1.40	0.59	0.61	0.63	0.65	0.67	0.70	0.72
	1.60	0.67	0.69	0.71	0.72	0.75	0.78	0.80
	1.80	0.75	0.77	0.78	0.80	0.83	0.85	0.87
	2.00	0.82	0.84	0.86	0.88	0.91	0.93	0.95

Localización:

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

yecto: Santa, Departamento de Ancash - 2022"

Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 13 Muestra: 2 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	lf:	112	cm/m
			•	1				_
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

u:	0.25		Es:	1530	Tn/m2	lf:	210	cn
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	_
Si (cm)	0.00	0.80		adm (kg/cm		1.00	2.00	-
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

Proyecto: "Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan
Calicata: 14 Muestra: 3 Fecha: Set-24

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

2. $Q_d = S_c * i_c * C * N_c$ Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de

 $Q_d = S_c * i_c * C * N_c$ fricción interna (Ø = 0). $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_\gamma * i_\gamma * y_2 * B' * N_\gamma$

Para suelos friccionantes (gravas, arenas y gravas-

DATOS GENERALES										
Ángulo de Fricción21.54Cohesión0 tn/m2Tipo Su										
K	K 1.68 Tn/m3 F.S. 3 Arena Mal					Graduada				
DETERMINA	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA Relación L/B = 1									
Nc	16.38	Sc	1.20	Fcd	No considerados	ic	1			
Nq	7.46	Sq	0.00	Fqd	Teoría - Cimentación	iq	1			
Ny	3.75	Sγ	0.80	Fyd	Superficial	iγ	1			

Qadm=C	apacidad	B=Ancho de Zapata (m)						
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.40	0.44	0.48	0.52	0.56	0.60	0.64
	1.00	0.48	0.52	0.56	0.60	0.64	0.68	0.72
	1.20	0.56	0.60	0.64	0.68	0.72	0.76	0.80
Df (m)	1.40	0.64	0.68	0.72	0.76	0.80	0.84	0.88
	1.60	0.72	0.76	0.80	0.84	0.88	0.92	0.96
	1.80	0.80	0.84	0.88	0.92	0.96	1.00	1.04
	2.00	0.88	0.92	0.96	1.00	1.04	1.08	1.12

DETERMINACION DE LA CAPACIDAD PORTANTE PARA CIMIENTO CORRIDO										
Nc	16.38	Sc	1.09	Fcd	No considerados	ic	1			
Nq	7.46	Sq	0.00	Fqd	Teoría - Cimentación	iq	1			
Ny	3.75	Sγ	0.92	Fyd	Superficial	iɣ	1			

Qadm=Ca	apacidad	B=Ancho de Zapata (m)								
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.20 1.50 1.80 2.00				
	0.80	0.37	0.39	0.41	0.43	0.46	0.48	0.50		
	1.00	0.45	0.47	0.49	0.51	0.54	0.56	0.58		
	1.20	0.53	0.55	0.57	0.59	0.62	0.64	0.66		
Df (m)	1.40	0.61	0.63	0.65	0.67	0.70	0.72	0.74		
	1.60	0.69	0.71	0.73	0.75	0.78	0.80	0.82		
	1.80	0.77	0.79	0.81	0.83	0.85	0.88	0.90		
	2.00	0.85	0.87	0.89	0.91	0.93	0.96	0.98		

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Localización: Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Calicata: 14 Muestra: 3 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	lf:	112	cm/
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	7
Si (cm)	1.00	1.50		adm (kg/cm		3.50	4.00	-
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	7
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	7
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

u:	0.25		Es:	1530	Tn/m2	lf:	210	cn
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	٦.
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022" Distrito Santa, Provincia Santa, Ancash Localización:

Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan Tesistas: Set-24 Calicata: Muestra: 3 Fecha:

Qd = c'N'cFcsFcdFcc + qN'qFqsFqdFqc + 0.5yBN'yFysFydFyc

1. $\emptyset = \tan^{-1}(0.67 * \tan \phi)$

Para suelos cohesivos (arcilla, arcilla limosa y limo arcilloso), Angulo de 2. $Q_d = S_c * i_c * C * N_c$

fricción interna ($\emptyset = 0$).

Para suelos friccionantes (gravas, arenas y gravas- $Q_d = i_q * y_1 * D_f * N_q + 0.5 * S_\gamma * i_\gamma * y_2 * B' * N_\gamma$

DATOS GENERALES										
Ángulo de	Fricción	22.01	Cohesión		0 tn/m2	Tipo Suelo				
K	K 1.68 Tn/m3 F.S. 3 Arena Mal G			Graduada						
DETERMINA	DETERMINACION DE LA CAPACIDAD PORTANTE PARA ZAPATA CUADRADA									
Nc	16.89	Sc	1.20	Fcd	No considerados	ic	1			
Nq	7.83	Sq	0.00	Fqd	Teoría - Cimentación	iq	1			
Ny	4.07	Sγ	0.80	Fyd	Superficial	iγ	1			

Qadm=Ca	apacidad	B=Ancho de Zapata (m)						
Admisible	(kg/cm2)	1.00	1.50	2.00	2.50	3.00	3.50	4.00
	0.80	0.41	0.45	0.49	0.53	0.58	0.62	0.66
	1.00	0.49	0.53	0.57	0.61	0.66	0.70	0.74
	1.20	0.57	0.61	0.65	0.70	0.74	0.78	0.82
Df (m)	1.40	0.65	0.69	0.73	0.78	0.82	0.86	0.90
	1.60	0.73	0.77	0.82	0.86	0.90	0.94	0.98
	1.80	0.81	0.85	0.90	0.94	0.98	1.02	1.06
	2.00	0.89	0.93	0.98	1.02	1.06	1.10	1.15

DETERMINACION DE LA CAPACIDAD PORTANTE PARA CIMIENTO CORRIDO									
	_						L/B >= 5		
Nc	16.89	Sc	1.09	Fcd	No considerados	ic	1		
Nq	7.83	Sq	0.00	Fqd	Teoría - Cimentación	iq	1		
Ny	4.07	Sγ	0.92	Fyd	Superficial	iɣ	1		

Qadm=Ca	apacidad	B=Ancho de Zapata (m)								
Admisible	(kg/cm2)	0.60	0.80	1.00	1.20	1.50	1.80 2.00			
	0.80	0.38	0.40	0.42	0.44	0.47	0.50	0.52		
	1.00	0.46	0.48	0.50	0.52	0.55	0.58	0.60		
	1.20	0.54	0.56	0.58	0.60	0.63	0.66	0.68		
Df (m)	1.40	0.62	0.64	0.66	0.68	0.71	0.74	0.76		
	1.60	0.71	0.72	0.74	0.76	0.79	0.82	0.84		
	1.80	0.79	0.81	0.82	0.84	0.87	0.90	0.92		
	2.00	0.87	0.89	0.91	0.92	0.95	0.98	1.00		

Localización:

UNIVERSIDAD NACIONAL DEL SANTA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICA PROFESIONAL DE INGENIERÍA CIVIL LABORATORIO DE MECÁNICA DE SUELOS

PRESIÓN DE CARGA ADMISIBLE POR LIMITACION DE ESFUERZO CORTANTE

"Zonificación geotécnica con fines de cimentación en la zona urbana del distrito de Santa, Provincia de Proyecto:

Santa, Departamento de Ancash - 2022"

Distrito Santa, Provincia Santa, Ancash

Tesistas: Montalvan Gonzales Katerinhe Paloma - Guzmán Vásquez Rogger Juan

Calicata: 15 Muestra: 3 Fecha: Set-24

CARGA ADMISIBLE POR LIMITACIÓN DE ASENTAMIENTO PARA ZAPATA CUADRADA

u:	0.25		Es:	1530	Tn/m2	lf:	112	cn
5()	4.00	1.50		2 - 2	1 200		4.00	_
B (m)	1.00	1.50	2.00	2.50	3.00	3.50	4.00	
Si (cm)			Qa	adm (kg/cm	12)			
0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.01	
0.04	0.06	0.04	0.03	0.02	0.02	0.02	0.01	
0.06	0.09	0.06	0.04	0.03	0.03	0.02	0.02	
0.08	0.12	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.15	0.10	0.07	0.06	0.05	0.04	0.04	
0.20	0.29	0.19	0.15	0.12	0.10	0.08	0.07	
0.40	0.58	0.39	0.29	0.23	0.19	0.17	0.15	
0.60	0.87	0.58	0.44	0.35	0.29	0.25	0.22	
0.80	1.17	0.78	0.58	0.47	0.39	0.33	0.29	
1.00	1.46	0.97	0.73	0.58	0.49	0.42	0.36	
1.50	2.19	1.46	1.09	0.87	0.73	0.62	0.55	
2.00	2.91	1.94	1.46	1.17	0.97	0.83	0.73	

u:	0.25		Es:	1530	Tn/m2	lf:	210	cm/m
								_
B (m)	0.60	0.80	1.00	1.20	1.50	1.80	2.00	
Si (cm)			Q	adm (kg/cm	2)			
0.02	0.03	0.02	0.02	0.01	0.01	0.01	0.01	
0.04	0.05	0.04	0.03	0.03	0.02	0.02	0.02	
0.06	0.08	0.06	0.05	0.04	0.03	0.03	0.02	
0.08	0.10	0.08	0.06	0.05	0.04	0.03	0.03	
0.10	0.13	0.10	0.08	0.06	0.05	0.04	0.04	1
0.20	0.26	0.19	0.16	0.13	0.10	0.09	0.08	1
0.40	0.52	0.39	0.31	0.26	0.21	0.17	0.16	
0.60	0.78	0.58	0.47	0.39	0.31	0.26	0.23	1
0.80	1.04	0.78	0.62	0.52	0.41	0.35	0.31	
1.00	1.30	0.97	0.78	0.65	0.52	0.43	0.39	
1.50	1.94	1.46	1.17	0.97	0.78	0.65	0.58	
2.00	2.59	1.94	1.55	1.30	1.04	0.86	0.78	1

ANEXO 5

PANEL FOTOGRAFICO

Foto 1: Extracción de muestras en distintos sectores del distrito (zona 11 y zona 15) de santa por parte de lso tesistas

Foto 2: Extracción de muestras en zona 6 y zona 10 del distrito de santa

Foto 03: realización del ensayo de DPL zona 8

Foto 04: realización del ensayo de DPL en la zona 9

Foto 05: Realización del ensayo de DPL en la zona 01

Foto 06: elaboración del análisis granulométrico por tamizado en el laboratorio de mecánica de suelos de la UNS.

Foto 07: Elaboración del análisis granulométrico por lavado en el laboratorio de mecánica de suelos de la UNS.

Foto 08: preparación de las muestras para realizar el contenido de humedad en el laboratorio de mecánica de suelos de la UNS

Foto 09: Preparación de la muestra para realizar los límites de Attemberg en el laboratorio de mecánica de suelos de la UNS.

Foto 10 y 11: Ensayos de los límites de Attemberg y copa Casagrande en el laboratorio de mecánica de suelos de la UNS.

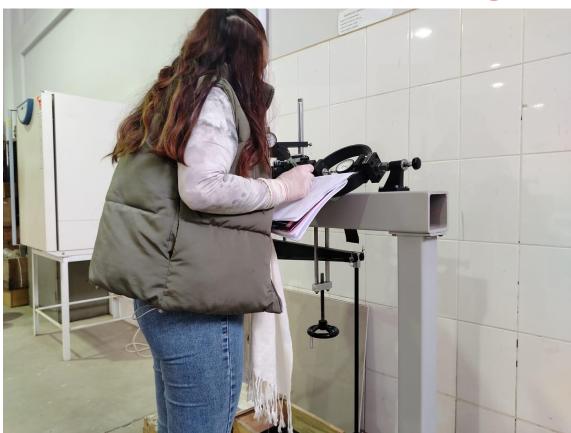


Foto 12 Y 13: Preparación de la muestra para realizar el ensayo de corte directo en el laboratorio de mecánica de suelos de la UNS.



Foto 14: Manipulación de la maquina de ensayo de corte directo, nivelación de los discos de carga para realizar el ensayo, en el laboratorio de mecánica de suelos de la UNS.

Foto 15: Lecturando los diales del ensayo de corte directo, en el laboratorio de mecánica de suelos de la UNS.

Foto 16: Muestra del suelo ensayado por corte directo, en el laboratorio de mecánica de suelos de la UNS.

ANEXO 6

PLANOS